首页> 外文学位 >Differential orbital element-based spacecraft formation control strategies
【24h】

Differential orbital element-based spacecraft formation control strategies

机译:基于差分轨道元素的航天器编队控制策略

获取原文
获取原文并翻译 | 示例

摘要

Spacecraft formation flight is an important technology for upcoming scientific and Earth observation missions. The topic of this work is the control of spacecraft formations specifically through the control of the differential, mean orbital elements of a spacecraft. Orbital perturbations can disturb formation geometry in an undesirable fashion so active control is required to maintain a precise relative trajectory.;A number of control strategies are proposed. The first is an impulsive thrust strategy that is valid for formations in both eccentric and circular orbits. A general N-thrust per orbit formulation is presented. For the two-thrust case, an analytical solution to the constraint equations is presented and the closed-loop stability of the formation is considered. Two-thrust performance is shown to achieve superior position control with similar delta-V over previously proposed control strategies.;The geomagnetic Lorentz force is a propellantless means of altering a spacecraft's orbit. A spacecraft with a significant surface charge experiences the Lorentz force due to the spacecraft's velocity relative to the Earth's magnetic field. Application of the Lorentz force to the formation control problem is a major contribution of this work. It is identified that the relative spacecraft state is not completely controllable with the Lorentz force alone, necessitating control strategies that combine conventional thruster actuation with the Lorentz force. Emphasis is placed on minimizing the thruster actuation and maximizing the use of the Lorentz force. Strategies that employ both continuous and impulsive thruster actuation with the Lorentz force are considered. Results show that the majority of the required actuation can be achieved using the Lorentz force.;Investigation of optimal impulsive thrusting with continuous Lorentz force actuation motivates the development of novel optimal control theory for linear time-varying systems with both continuous and impulsive inputs. The necessary conditions to minimize a hybrid quadratic performance index are derived. A continuous and a discrete Riccati equation are required to solve the optimal control problem: the former yields the continuous solution between impulsive actions; the latter provides a new boundary condition at impulsive application times. Necessary and sufficient conditions are derived for optimal impulsive application times. Numerical simulations validate the solutions.
机译:航天器编队飞行是即将进行的科学和地球观测任务的一项重要技术。这项工作的主题是控制航天器的编队,特别是通过控制航天器的微分,平均轨道要素。轨道扰动会以不希望的方式干扰地层的几何形状,因此需要主动控制以保持精确的相对轨迹。第一种是脉冲推力策略,对偏心和圆形轨道上的地层均有效。介绍了每个轨道的一般N推力公式。对于两次推力情况,提出了约束方程的解析解,并考虑了地层的闭环稳定性。与以前提出的控制策略相比,具有两次推力性能可实现出色的位置控制,且具有类似的delta-V。;地磁洛仑兹力是改变航天器轨道的无推进剂。具有明显表面电荷的航天器由于其相对于地球磁场的速度而承受洛伦兹力。将洛伦兹力应用于地层控制问题是这项工作的主要贡献。可以确定,单独的洛伦兹力不能完全控制相对的航天器状态,因此需要将常规推进器致动与洛伦兹力相结合的控制策略。重点放在最小化推进器致动和最大程度地利用洛伦兹力上。考虑采用洛伦兹力连续和脉冲推进器致动的策略。结果表明,使用Lorentz力可以实现大多数所需的致动。研究具有连续Lorentz力致动的最佳脉冲推力,激励了具有连续和脉冲输入的线性时变系统的新型最优控制理论的发展。得出了最小化混合二次性能指标的必要条件。解决最佳控制问题需要连续和离散的Riccati方程。后者在脉冲应用时提供了新的边界条件。得出了最佳脉冲应用时间的必要条件和充分条件。数值模拟验证了解决方案。

著录项

  • 作者

    Sobiesiak, Ludwik Andrew.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号