首页> 外文学位 >Dynamical tides and oscillations in star and planetary systems
【24h】

Dynamical tides and oscillations in star and planetary systems

机译:恒星和行星系统中的动力潮汐和振荡

获取原文
获取原文并翻译 | 示例

摘要

I investigate tidal interactions and global oscillations in various types of stellar and planetary systems, with a focus on dynamical tidal effects. Dynamical tides arise from the excitation of non-hydrostatic waves within the stellar components, with tidal dissipation resulting from the damping of the excited waves. The wave frequencies, characteristics, and dissipative qualities vary greatly in different types of stellar systems, as does the resultant tidally induced evolution.;The first few chapters of this thesis focus on the excitation and dissipation of gravity waves within white dwarfs (WDs) in compact binary systems. I find that gravity waves are excited at composition gradients within the WDs, and may reach non-linear amplitudes in the outer layers of the star. At sufficiently short orbital periods, the waves are strongly non-linear and will break in the envelope of the white dwarf, producing efficient tidal dissipation. I show that this tidal dissipation will cause WDs to be nearly synchronized upon gravitational radiation-driven orbital decay. Moreover, the dissipation will heat the envelope of the WD, substantially increasing its luminosity and potentially reigniting its hydrogen shell to create a tidally induced nova-like event.;I also study the tidal excitation of stellar oscillation modes in eccentric binary systems and in triple star systems, and I compare my theory with recent Kepler observations. In eccentric binary systems such as KOI-54, the tidal forcing excites stellar oscillation modes at discrete multiples of the orbital frequency. The resulting orbital and spin evolution produced by the damping of these modes may lead to resonance locking, in which a stellar oscillation mode remains nearly resonant with the tidal forcing, producing greatly enhanced tidal dissipation. In hierarchical triple star systems such as HD 181068, the orbital motion of the inner binary can excite pressure modes in a red giant tertiary component. No stable tidal equilibrium exists for these systems, and the dissipation of the modes can cause the orbit of the inner binary to decay.;Lastly, I examine the oscillation mode spectrum of giant planets with a solid core. The rigidity of the core allows for the existence of shear modes which are confined to the solid core. In a rotating planet, the Coriolis force may cause substantial mixing between core shear modes and fundamental or pressure modes that propagate in the fluid envelope. The gravitational perturbations produced by these mixed modes can excite visible disturbances within a planetary ring system, and I compare our theoretical expectations with recent Cassini observations of waves in Saturn's rings.
机译:我研究各种类型的恒星和行星系统中的潮汐相互作用和整体振荡,重点是动力潮汐影响。动力潮汐是由恒星组件内非静水波的激发而产生的,潮汐耗散是由于对激发波的阻尼而产生的。在不同类型的恒星系统中,波的频率,特性和耗散质量变化很大,由此产生的潮汐诱导演化也是如此。本论文的前几章着重研究了白矮星(WD)中重力波的激发和消散。紧凑的二进制系统。我发现重力波在WD内以组分梯度激发,并可能在恒星外层达到非线性振幅。在足够短的轨道周期内,这些波是强烈非线性的,并且将在白矮星的包层中破裂,从而产生有效的潮汐消散。我表明,这种潮汐耗散将导致WD在重力辐射驱动的轨道衰减后几乎同步。此外,耗散会加热WD的外壳,大大提高其发光度并可能重新点燃其氢壳,从而产生潮汐引起的新星状事件。;我还研究了偏心二元系统和三重星系中恒星振荡模式的潮汐激发。恒星系统,我将我的理论与最近的开普勒观测结果进行了比较。在偏心二元系统(例如KOI-54)中,潮汐强迫以轨道频率的离散倍数激发恒星振荡模式。由这些模式的阻尼产生的最终轨道和自旋演化可能导致共振锁定,其中恒星振荡模式几乎与潮汐强迫保持共振,从而大大提高了潮汐耗散。在诸如HD 181068的分层三重星系统中,内部双星的轨道运动会激发红色巨型三级分量中的压力模式。这些系统不存在稳定的潮汐平衡,模式的耗散会导致内部双星的轨道衰减。最后,我研究了具有实心核的巨型行星的振荡模式谱。芯的刚性允许存在局限于实心芯的剪切模式。在旋转的行星中,科里奥利力可能会导致岩心剪切模式与在流体包膜中传播的基本或压力模式之间发生大量混合。这些混合模式产生的引力扰动会激发行星环系统内的可见扰动,我将我们的理论期望与卡西尼号最近对土星环中波的观测进行了比较。

著录项

  • 作者

    Fuller, James Woodrow.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Astronomy.;Astrophysics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 293 p.
  • 总页数 293
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号