首页> 外文学位 >Effect of Electrospun Nanofibers on the Short Beam Strength of Laminated Fiberglass Composite.
【24h】

Effect of Electrospun Nanofibers on the Short Beam Strength of Laminated Fiberglass Composite.

机译:电纺纳米纤维对层合玻璃纤维复合材料短束强度的影响。

获取原文
获取原文并翻译 | 示例

摘要

High specific modulus and strength are the most desirable properties for the material used in structural applications. Composite materials exhibit these properties and over the last decade, their usage has increased significantly, particularly in automotive, defense, and aerospace applications. The major cause of failures in composite laminates is due to delaminations. Delamination in composite laminates can occur due to fatigue, low velocity impact and other loadings modes. Conventional methods like "through-the-thickness stitching" or "Z-Pinning" have limitations for improving flexural and interlaminar properties in woven composites due to the fact that while improving interlaminar properties, the presence of stitches or Z pins affects in-plane properties.;This study investigates the flexural behavior of fiberglass composites interleaved with non-woven Tetra Ethyl Orthosilicate (TEOS) electrsopsun nanofibers (ENFs). TEOS ENFs were manufactured using an electrospinning technique and then sintered. Nanoengineered beams were fabricated by interleaving TEOS ENFs between the laminated fiberglass composites to improve the flexural properties.;TEOS ENFs, resin film, and failed fiberglass laminated composites with and without nanofibers were characterized using SEM Imaging and ASTM standard testing methods. A hybrid composite was made by interleaving a non-woven sheet of TEOS ENFs between the fiberglass laminates with additional epoxy resin film and fabricated using the out of autoclave vacuum bagging method. Four commonly used stacking sequences of fiberglass laminates with and without nanofibers were used to study the progressive failure and deformation mechanics under flexural loadings. The experimental study has shown significant improvements in short beam strength and strain energy absorption in the nanoengineered laminated fiberglass composites before complete failure. The modes were investigated by performing detailed fractographic examination of failed specimens.;Experimental results were validated by developing a detailed three dimensional finite element model. Results of the progressive deformation and damage mechanics from the finite element model agreed well with the experimental results. Overall, nanoengineered beams showed improvement in the short beam strength and 30 % improvement in energy absorption as compared to a fiberglass beam without the presence of nanofibers.
机译:高比模量和强度是结构应用中使用的材料最理想的性能。复合材料具有这些特性,并且在过去十年中,它们的使用量显着增加,尤其是在汽车,国防和航空航天应用中。复合材料层压板失败的主要原因是分层。复合材料层压板可能会由于疲劳,低速冲击和其他加载方式而发生分层。常规方法(例如“超厚针迹”或“ Z钉”)在改善机织复合材料的挠曲和层间性能方面存在局限性,原因是在改善层间性能的同时,缝线或Z针的存在会影响面内性能。;这项研究调查了玻璃纤维复合材料与非织造四乙基原硅酸乙酯(TEOS)电子纳米纤维(ENFs)交错的弯曲行为。 TEOS ENF使用静电纺丝技术制造,然后烧结。纳米工程梁是通过在层压玻璃纤维复合材料之间插入TEOS ENF来改善挠曲性能而制成的。使用SEM成像和ASTM标准测试方法对TEOS ENF,树脂膜以及有无纳米纤维的失效玻璃纤维层压复合材料进行了表征。杂化复合材料是通过将TEOS ENF的非织造片材在玻璃纤维层压板之间插入额外的环氧树脂薄膜而制成的,并采用高压釜真空袋法制造。使用和不使用纳米纤维的玻璃纤维层压板的四个常用堆叠顺序用于研究弯曲载荷下的渐进破坏和变形力学。实验研究表明,在完全失效之前,纳米工程层压玻璃纤维复合材料的短束强度和应变能吸收有了显着改善。通过对失败的标本进行详细的分形检查​​来研究这些模式。通过建立详细的三维有限元模型来验证实验结果。有限元模型的渐进变形和损伤力学结果与实验结果吻合良好。总体而言,与不存在纳米纤维的玻璃纤维梁相比,纳米工程梁的短梁强度有所提高,能量吸收提高了30%。

著录项

  • 作者

    Shinde, Dattaji K.;

  • 作者单位

    North Carolina Agricultural and Technical State University.;

  • 授予单位 North Carolina Agricultural and Technical State University.;
  • 学科 Nanotechnology.;Materials science.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号