首页> 外文学位 >Impinging jet spray formation using non-Newtonian liquids.
【24h】

Impinging jet spray formation using non-Newtonian liquids.

机译:使用非牛顿液体冲击喷射喷雾形成。

获取原文
获取原文并翻译 | 示例

摘要

Over the past two decades there has been a heightened interest in implementing gelled propellants for rocket propulsion, especially for hypergolic bi-propellants such as monomethylhydrazine (MMH) and nitrogen tetroxide oxidizer (NTO). Due to the very high level of toxicity of hypergolic liquid rocket propellants, increasing safety is an important area of need for continued space exploration and defense operations. Gelled propellants provide an attractive solution to meeting the requirements for safety, while also potentially improving performance.;A gelling agent can be added to liquid propellants exhibiting Newtonian behavior to transform the liquid into a non-Newtonian fluid with some solid-like behavior, i.e. a gel. Non-Newtonian jet impingement is very different from its Newtonian counterpart in terms of fluid flow, atomization, and combustion. This is due to the added agents changing physical properties such as the bulk rheology (viscosity) and interfacial rheology (surface tension).;Spray characterization of jet impingement with Newtonian liquids has been studied extensively in existing literature. However, there is a scarcity in literature of studies that consider the spray characterization of jet impingement with gelled propellants. This is a rather critical void since a major tradeoff of utilizing gelled propellants is the difficulty with atomization due to the increased effective viscosity. However, this difficulty can be overcome by using gels that exhibit shear-thinning behavior---viscosity decreases with increasing strain rate. Shear-thinning fluids are ideal because they have the distinct advantage of only flowing easily upon pressure. Thereby, greatly reducing the amount of propellant that could be accidentally leaked during both critical functions such as liftoff or engagement in the battlefield and regular tasks like refilling propellant tanks.;This experimental work seeks to help resolve the scarcity in existing literature by providing drop size and drop velocity mean values and distribution of several non-Newtonian liquids using a like-on-like impinging jet doublet. The drop size and drop velocity are important areas of study because of the effect on mass transfer and mass dispersal. Phase Doppler Anemometry (PDA) is used to measure the drop diameter and drop velocity. The drop diameter is measured by finding a phase difference between two signals. The drop velocity is measured using Laser Doppler Anemometry (LDA), which is based on the Doppler shift. Parametric studies are conducted based on dimensionless groups, impinging jet geometry, and spatial position.;The investigated non-Newtonian liquids collapse onto a single mean diameter versus Reynolds number curve. However, this behavior is not observed for the gels due to differences in surface tension and molecular structure. In general, increasing the inertial force results in smaller drops and greater drop velocities. The different geometric parameters are observed to have varying degrees of influence, based on the propellant simulant considered. Larger drops with lower axial velocities are generally observed with increasing transverse distances from the centerline of the impinging jet spray.
机译:在过去的二十年中,人们越来越关注将胶凝型推进剂用于火箭推进,特别是对于高甲基化双推进剂,例如一甲基肼(MMH)和四氧化二氮氧化剂(NTO)。由于高目标液体火箭推进剂具有很高的毒性,因此提高安全性是继续进行太空探索和防御行动的重要领域。胶凝推进剂为满足安全性要求提供了有吸引力的解决方案,同时还潜在地提高了性能。可以将胶凝剂添加到具有牛顿行为的液体推进剂中,以将液体转变为具有某些类固体行为的非牛顿流体,即凝胶。非牛顿射流撞击在流体流动,雾化和燃烧方面与牛顿射流撞击有很大不同。这是由于添加的试剂改变了物理性质,例如整体流变学(粘度)和界面流变学(表面张力)。牛顿液体对射流撞击的喷雾表征已在现有文献中进行了广泛研究。然而,在研究文献中缺乏考虑胶凝推进剂对射流冲击的喷雾特性的研究。这是相当关键的空隙,因为利用胶凝推进剂的主要折衷是由于增加的有效粘度而难以雾化。但是,可以通过使用表现出剪切稀化行为的凝胶来克服这一困难-粘度随应变速率的增加而降低。剪切稀化流体是理想的,因为它们具有仅在压力下才容易流动的明显优势。因此,极大地减少了在起飞或进入战场等关键功能以及为推进剂坦克加注等常规任务期间可能意外泄漏的推进剂数量;该实验工作旨在通过提供液滴尺寸来帮助解决现有文献中的稀缺性和类似的撞击射流双峰的几种非牛顿液体的液滴速度平均值和分布。液滴尺寸和液滴速度是重要的研究领域,因为它对传质和质量分散有影响。相位多普勒风速仪(PDA)用于测量墨滴直径和墨滴速度。通过找到两个信号之间的相位差来测量墨滴直径。使用基于多普勒频移的激光多普勒风速仪(LDA)测量落下速度。参数研究是基于无量纲的组,撞击的射流几何形状和空间位置进行的。研究的非牛顿液体坍塌成一条平均直径与雷诺数曲线。然而,由于表面张力和分子结构的差异,对于凝胶没有观察到这种行为。通常,增加惯性力会导致较小的液滴和较大的液滴速度。根据所考虑的推进剂模拟物,观察到不同的几何参数具有不同程度的影响。通常观察到较大的液滴,具有较低的轴向速度,并且距撞击射流的中心线的横向距离增加,从而产生较大的液滴。

著录项

  • 作者

    Rodrigues, Neil S.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Mechanical engineering.;Aerospace engineering.
  • 学位 M.S.M.E.
  • 年度 2014
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号