首页> 外文学位 >Design of a robotic bio-sampler and localization improvement for underwater autonomous gliders.
【24h】

Design of a robotic bio-sampler and localization improvement for underwater autonomous gliders.

机译:机器人生物采样器的设计以及水下自主滑翔机的定位改进。

获取原文
获取原文并翻译 | 示例

摘要

This thesis comprises two parts, the first part presents the development of a robotic platform to function as a biological sampler compatible with the Slocum Underwater Autonomous Glider (UAG). The second part presents a localization algorithm to improve positioning estimation of the glider underwater.;The ocean is very critical to life on earth yet 95% of it still remains unexplored. Hence, scientists all over the world have been deeply interested in understanding all the features of the ocean. One such feature which still remains unclear is how a diverse bacterial community transitions between seasons in a coastal ecosystem and how this transition affects the global biogeochemical cycles. This is because of our inability to collect water sample at the right time and space in these ecosystems to resolve the processes influencing the microbiota. One of the reasons for this inability is the lack of a component capable of collecting and returning intact biomass to the laboratory for molecular ecology studies. To meet this requirement, the first part of this thesis aims at development of a robotic platform called the bio-sampler to address fundamental questions in marine ecology and to elucidate the mechanisms supporting the diversity of microorganisms in the ocean. Our aim is to have the bio-sampler installed in the science bay of the glider. Such a mobile platform is capable of in-situ sampling and preservation on a range of spatial scales. Using the bio-sampler we demonstrated autonomous filtration of samples and running our preservation process on them. We also conducted contamination and sample preservation tests to validate the functioning of this robotic platform. The results confirmed that the bio-sampler was able to perform sample preservation without carrying any water sample from previous sample to the next one. The results also confirmed that the bio-sampler did not cause any cross-contamination between samples.;In the second part of this thesis, we try to improve the localization of the Slocum glider. Underwater autonomous gliders such as the Slocum glider provide an effective platform for marine and coastal scientists for conducting exploration missions which may last several weeks or even months. However, localization of these gliders underwater is a challenging task based only on the sensors on-board these gliders. Also these gliders move slowly, with an average horizontal velocity of around 0.2 - 0.3 m/s and hence are vulnerable to ocean currents. When these gliders resurface, they receive GPS signals to identify their position. Since they mostly run underwater this makes it difficult to obtain accurate positioning of the glider. The new localization scheme is based upon the dynamic model of the glider fused with on-board sensor measurements like depths and yaw angles. The experimental results have shown that the new localization scheme improves the position estimation of the glider without using any new sensors apart from the ones which are already on the glider.
机译:本论文包括两个部分,第一部分介绍了一个机器人平台的开发,该平台可以用作与Slocum水下自动滑翔机(UAG)兼容的生物采样器。第二部分提出了一种定位算法,以改善滑翔机在水下的定位估计。海洋对地球生命至关重要,但仍有95%的海洋尚未开发。因此,全世界的科学家对了解海洋的所有特征都非常感兴趣。一个尚不清楚的特征是沿海生态系统中不同细菌群落如何在季节之间转换,以及这种转换如何影响全球生物地球化学循环。这是因为我们无法在这些生态系统中的正确时间和空间收集水样,无法解决影响微生物群落的过程。造成这种情况的原因之一是缺少能够收集完整生物质并将其返回实验室进行分子生态学研究的成分。为了满足这一要求,本文的第一部分旨在开发一种称为生物采样器的机器人平台,以解决海洋生态学中的基本问题并阐明支持海洋微生物多样性的机制。我们的目标是将生物采样器安装在滑翔机的科学湾中。这样的移动平台能够在一定范围的空间尺度上进行原位采样和保存。使用生物采样器,我们演示了样品的自动过滤并对其进行保存过程。我们还进行了污染和样品保存测试,以验证该机器人平台的功能。结果证实,该生物取样器能够进行样品保存,而无需将任何水样品从前一个样品运送到下一个样品。结果也证实了该生物采样器不会造成样品之间的任何交叉污染。;在本论文的第二部分,我们试图改善Slocum滑翔机的定位。水下自主滑翔机(例如Slocum滑翔机)为海洋和沿海科学家执行可能持续数周甚至数月的勘探任务提供了有效的平台。然而,仅基于这些滑翔机上的传感器,将这些滑翔机定位在水下是一项艰巨的任务。而且这些滑翔机移动缓慢,平均水平速度约为0.2-0.3 m / s,因此容易受到洋流的影响。当这些滑翔机浮出水面时,它们会接收GPS信号以识别其位置。由于它们大多在水下运行,因此很难获得滑翔机的精确定位。新的定位方案基于滑翔机的动态模型与机载传感器测量值(例如深度和偏航角)融合在一起。实验结果表明,新的定位方案改进了滑翔机的位置估计,而无需使用任何新传感器(滑行上已有的传感器除外)。

著录项

  • 作者

    Singh, Pratul Kumar.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Robotics.;Biological oceanography.
  • 学位 M.S.
  • 年度 2014
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号