首页> 外文学位 >The discovery of global mechanisms to increase the yield of erythromycin from Escherichia coli.
【24h】

The discovery of global mechanisms to increase the yield of erythromycin from Escherichia coli.

机译:发现增加大肠杆菌中红霉素产量的整体机制。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we describe the discovery of novel mechanisms for improving the production of the antibiotic erythromycin in Escherichia coli . The synthesis of erythromycin in E. coli requires the heterologous expression of polyketide synthases and over a dozen other enzymes that occur naturally in Saccharopolyspora erythraea, an actinomycete bacterium. Classical methods for strain improvement often involve multiple rounds of random mutagenesis and screening, leaving unknown mutations. To study the effects of random mutations, we screened a library of transposon mutants of E. coli for increased production of erythromycin; the use of a transposon as the mutagen allowed the identification of the causative mutations. From this screen, two new mutations were discovered. Each identified a strain improvement that doubles the yield of erythromycin from E. coli.;One improved mutant contains a transposon inserted between the -10 and -35 regions of a promoter for rpoE, the gene encoding the sigma factor for the extracytoplasmic stress response, sigma E. Rather than inactivating the promoter, the transposon insertion in this mutant increases the transcription of rpoE while simultaneously reducing sigmaE autoinduction. Other mutations that increase the sigmaE response also improve the production of erythromycin, yet trigger an increase in cell lysis not seen in cultures of the transposon mutant. The transposon mutant contains higher concentrations of the soluble enzymes for the synthesis of erythromycin, likely resulting from the modified transcription of the sigmaE regulon.;A second mutant contains a transposon inserted within metY, one of four identical genes encoding the initiator tRNA of E. coli . The deletion of metY or the identical gene metV both improve the production of erythromycin, but the simultaneous deletion of multiple genes that encode initiator tRNA does not further increase production. The initiator tRNA mutants also contain higher concentrations of the soluble enzymes for the synthesis of erythromycin, perhaps resulting from modified translational initiation within these strains.;While the rational engineering of production strains often targets specific metabolic pathways, the new mutants revealed by this screen involve mechanisms that impact global transcription or translation within the cells. Additionally, these mutants demonstrate the success of transposon mutagenesis in improving production strains, where the transposon insertions, rather than inactivating pathways, alter the expression of key components of normal cellular function. Combining the new mutations fails to further increase the yield of erythromycin, highlighting the importance of relevant characteristics of the initial strain on the types of mutations identified by a screen. Consequently, for engineered microorganisms, multiple rounds of mutagenesis are likely required to achieve high productivity.
机译:在本文中,我们描述了新型机制的发现,该机制可改善大肠杆菌中红霉素的产生。在大肠杆菌中合成红霉素需要异酮表达聚酮化合物合酶和超过十二种其他酶,这些酶自然存在于放线菌细菌性红细菌中。改良菌株的经典方法通常涉及多轮随机诱变和筛选,留下未知的突变。为了研究随机突变的影响,我们筛选了大肠杆菌的转座子突变体文库,以提高红霉素的产量。使用转座子作为诱变剂可以鉴定致病突变。从这个屏幕上,发现了两个新的突变。每个研究人员都鉴定出一种菌株改良方法,可使大肠杆菌的红霉素产量提高一倍。一个改良的突变体包含一个插入转座子的转座子,该转座子位于rpoE启动子的-10和-35之间,rpoE是编码胞外应激反应sigma因子的基因,而不是使启动子失活,该突变体中的转座子插入增加了rpoE的转录,同时降低了sigmaE的自诱导。其他增加sigmaE反应的突变也可改善红霉素的产生,但会引发转座子突变体培养物中未见的细胞裂解增加。转座子突变体含有较高浓度的用于合成红霉素的可溶性酶,这可能是由于sigmaE regulon的转录被修饰而引起的;第二个突变体包含插入metY内的转座子,metY是编码E的启动子tRNA的四个相同基因之一。大肠杆菌。 metY的缺失或同一个基因metV的缺失均可提高红霉素的产量,但同时缺失多个编码启动子tRNA的基因不会进一步提高产量。起始tRNA突变体还含有较高浓度的用于合成红霉素的可溶性酶,这可能是由于这些菌株中修饰的翻译起始所致。虽然生产菌株的合理设计通常针对特定的代谢途径,但该筛选揭示的新突变体涉及影响细胞内整体转录或翻译的机制。另外,这些突变体证明了转座子诱变在改善生产菌株方面的成功,其中转座子的插入而不是失活的途径改变了正常细胞功能关键成分的表达。组合新的突变不能进一步增加红霉素的产量,突出了初始菌株的相关特征对通过筛选鉴定的突变类型的重要性。因此,对于工程微生物,可能需要进行多轮诱变才能实现高生产率。

著录项

  • 作者

    Stoner, Deborah Anne.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Biology Microbiology.;Engineering Biomedical.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号