首页> 外文学位 >Metal{Polymer Hybrid Materials For Flexible Transparent Conductors.
【24h】

Metal{Polymer Hybrid Materials For Flexible Transparent Conductors.

机译:金属{用于柔性透明导体的聚合物杂化材料。

获取原文
获取原文并翻译 | 示例

摘要

The field of organic electronics, till recently a mere research topic, is currently making rapid strides and tremendous progress into entering the mainstream electronics industry with several applications and products such as OLED televisions, curved displays, wearable devices, flexible solar cells, etc. already having been commercialized. A major component in these devices, especially for photovoltaic applications, is a transparent conductor used as one of the electrodes, which in most commercial applications are highly doped wide bandgap semiconducting oxides also called Transparent Conducting Oxides (TCOs). However, TCOs exhibit inherent disadvantages such as limited supply, brittle mechanical properties, expensive processing that present major barriers for the more widespread economic use in applications such as exible transparent conductors, owing to which suitable alternative materials are being sought. In this context we present two approaches in realizing alternative TCs using metal-polymer hybrid materials, with high figures of merit that are easily processable, reasonably inexpensive and mechanically robust as well.;In this context, our first approach employs laminated metal-polymer photonic bandgap structures to effectively tune optical and electrical properties by an appropriate design of the material stack, factoring in the effect of the materials involved, the number of layers and layer properties. We have found that in the case of a four-bilayer Au/polystyrene (AujPS) laminate structure, an enhancement in optical transmittance of ∼ 500% in comparison to a monolithic A film of equivalent thickness, can be achieved. The high conductivity (∼ 106 O--1cm--1) of the metallic component, Au in this case, also ensures planar conductivity; metallic inclusions in the dielectric polymer layer can in principle give rise to out-of-plane conductivity as well enabling a fully functional TC. Such materials also have immense potential for several other applications owing to the sensitivity of this resonant tunneling effect, such as optical filters, optical power limiters, antireflection coatings, electrochromic devices, to name a few.;Our second approach to realizing an alternative flexible TC is based on random networks of Ag-NWs and their composites with various polymers that are electrically conducting or insulating. While considered a highly promising material system with a potential to replace commercially used TCOs like ITO, the high variability in films of Ag-NWs fabricated from solutions is however a major issue for scalability and reproducibility. This variability can in turn be attributed partly to NW dispersion instability, which can be addressed by the use of polymer additives and modified solution chemistries. In preparing such composites, considerable attention has been given to the use of conducting polymers like PEDOT:PSS which can contribute to charge transport as well. We present here a systematic approach to obtaining quantifiably uniform, highly transparent and conducting films in a reproducible manner, with composites of Ag-NWs with both conducting (PEDOT:PSS) and nonconducting polymers (like PSS and PVA), demonstrating the effectiveness of such an approach. While Ag-NW films spun cast from solution show good electrical conductivity (∼2-50 = O/□) and high transparency (∼ 70-90%), they also show high variability (∼15-20% in RSheet and NW coverage) and poor reproducibility. Ag- NW/polymer composites, on the other hand, show similar electrical and optical properties with high figures of merit but with lower variability and greater uniformity (<5% variation in R Sheet and NW coverage). The composite films also show remarkable retention of electrical conductivity even after several cycles of mechanical flexing, further justifying the use of polymer-stabilized networks and paving the way for greater control and ease in processing transparent, conducting and flexible films for novel devices.;The Ag-NWs based TCs were also incorporated in organic solar cell devices to test for their efficacy in an application and their performances were compared to that of control cell devices having ITO as the TC electrode. We found that performances of Ag-NW/polymer composites, particularly those of PEDOT:PSS were comparable to ITO-based solar cells, with power conversion efficiencies ∼ 3%, thus demonstrating the effectiveness in using these TCs in potential commercial applications such as solar cells, OLEDs, displays, etc.
机译:到目前为止,有机电子学领域只是一个研究课题,目前已经取得了长足的进步,并在进入主流电子工业方面取得了巨大进展,已经有了多种应用和产品,例如OLED电视,曲面显示器,可穿戴设备,柔性太阳能电池等。已商业化。在这些设备中,尤其是在光伏应用中,主要组件是用作电极之一的透明导体,在大多数商业应用中,该透明导体是高掺杂宽带隙半导体氧化物,也称为透明导电氧化物(TCO)。但是,TCO表现出固有的缺点,例如供应有限,机械性能脆弱,昂贵的加工工艺,这为诸如柔性透明导体之类的应用中的更广泛的经济使用提供了主要障碍,因此,正在寻求合适的替代材料。在这种情况下,我们提出了两种使用金属-聚合物混合材料实现替代TC的方法,它们具有易于加工,价格合理且机械坚固的高品质因数;在这种情况下,我们的第一种方法是使用层压的金属-聚合物光子技术带隙结构,通过对材料叠层的适当设计,有效地调整光学和电学特性,并考虑到所涉及材料的效果,层数和层特性。我们发现,在四层金/聚苯乙烯(AujPS)层压结构的情况下,与等效厚度的单片A膜相比,可以实现约500%的光学透射率增强。在这种情况下,金属成分(Au)的高电导率(〜106 O--1cm--1)也确保了平面电导率。介电聚合物层中的金属夹杂物原则上可以产生面外导电性,并且还可以实现完全起作用的TC。由于这种共振隧穿效应的敏感性,此类材料在其他几个应用中也具有巨大潜力,例如滤光片,光功率限制器,抗反射涂层,电致变色器件等;我们实现可替代柔性TC的第二种方法是基于Ag-NW及其与导电或绝缘的各种聚合物的复合材料的随机网络。尽管被认为是一种很有前途的材料系统,有可能取代诸如ITO之类的商用TCO,但由溶液制成的Ag-NW薄膜的高度可变性却是可扩展性和可再现性的主要问题。该变化性又可以部分归因于NW分散体的不稳定性,这可以通过使用聚合物添加剂和改性溶液化学来解决。在制备这种复合材料时,已经对使用导电聚合物如PEDOT:PSS给予了极大的关注,它们也可以促进电荷传输。我们在此介绍一种系统的方法,以可重现的方式获得可量化的均匀,高度透明和导电的薄膜,其中包括具有导电性(PEDOT:PSS)和非导电性聚合物(例如PSS和PVA)的Ag-NWs的复合物,证明了这种方法的有效性一种方法。从溶液中纺出的Ag-NW薄膜显示出良好的电导率(〜2-50 = O / squ)和高透明度(〜70-90%),但它们也显示出高可变性(RSheet和NW中约为15-20%覆盖率)和可重复性差。另一方面,Ag-NW /聚合物复合材料显示出相似的电学和光学性能,具有较高的品质因数,但变异性较低且均匀性更高(R Sheet和NW覆盖率的变化<5%)。即使经过几次机械弯曲循环后,复合膜也显示出出色的导电性,进一步证明了使用聚合物稳定的网络的合理性,为更好地控制和简化用于新型器件的透明,导电和柔性膜的加工铺平了道路。基于Ag-NWs的TC也被并入有机太阳能电池设备中,以测试其在应用中的功效,并将其性能与具有ITO作为TC电极的对照电池设备的性能进行比较。我们发现,Ag-NW /聚合物复合材料的性能,特别是PEDOT:PSS的性能可与基于ITO的太阳能电池相媲美,功率转换效率约为3%,从而证明了在潜在的商业应用(例如太阳能)中使用这些TC的有效性。电池,OLED,显示器等

著录项

  • 作者

    Narayanan, Sudarshan.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号