首页> 外文学位 >Toxoplasma gondii interactions with vascular endothelium under fluidic shear stress.
【24h】

Toxoplasma gondii interactions with vascular endothelium under fluidic shear stress.

机译:弓形虫在流体剪切应力作用下与血管内皮的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Toxoplasma gondii is a highly successful parasite that infects approximately one-third of the human population and can cause fatal disease in immunocompromised individuals. Systemic parasite dissemination to organs such as the brain and eye is critical to disease pathogenesis. T. gondii can disseminate via the circulation, and both intracellular and extracellular modes of transport have been proposed. To examine the dynamics of both of these dissemination mechanisms we have developed a fluidic system combined with time-lapse fluorescence microscopy. Using this approach, we showed that T. gondii-infected primary human monocytes and THP-1 cells exhibited altered adhesion dynamics compared to uninfected monocytes: infected cells rolled at significantly higher velocities (2.5 to 4.6-fold) and over greater distances (2.6 to 4.8-fold) than uninfected monocytes before firmly adhering. Since infected monocytes appeared delayed in their transition to firm adhesion, we examined the effects of infection on integrin expression and function. T. gondii did not affect the expression of LFA-1, VLA-4, or MAC-1 or the ability of Mn2+ to activate these integrins. However, T. gondii infection impaired LFA-1 and VLA-4 clustering and pseudopod extension in response to integrin ligands.;We then applied this same fluidic system to questions of extracellular parasite adhesion to endothelium and showed that shear force influenced parasite adhesion and motility dynamics and the outcome of parasite interactions with endothelium. Extracellular parasites were capable of adhesion to primary human endothelium in shear stress conditions, and interestingly, shear stress enhanced T. gondii helical gliding, resulting in a significantly greater displacement. In addition, shear stress increased the percentage of tachyzoites that invaded or migrated across the endothelium. By examining T. gondii deficient in the adhesion protein MIC2, we found that MIC2 contributed to initial adhesion but was not required for adhesion strengthening. These data suggest that in fluidic conditions, T. gondii adhesion to endothelium may be mediated by a multistep cascade of interactions that is governed by unique combinations of adhesion molecules.;This dissertation work has led to a better understanding of the mechanisms by which T. gondii interacts with and migrates across endothelium into tissues, where the parasites ultimately cause disease.
机译:弓形虫是一种非常成功的寄生虫,可感染约三分之一的人口,并可能在免疫功能低下的个人中引起致命的疾病。全身性寄生虫向脑和眼等器官的传播对于疾病发病机理至关重要。弓形虫可以通过循环传播,并且已经提出了细胞内和细胞外的运输方式。为了检查这两种传播机制的动力学,我们开发了一种与延时荧光显微镜相结合的流体系统。使用这种方法,我们发现与未感染的单核细胞相比,弓形虫感染的原代人单核细胞和THP-1细胞的粘附动力学发生了变化:感染的细胞以更高的速度(2.5到4.6倍)和更远的距离(2.6到2.6倍)滚动4.8倍)比未感染的单核细胞牢固粘附。由于被感染的单核细胞似乎延迟了其向牢固粘附的过渡,因此我们检查了感染对整联蛋白表达和功能的影响。刚地弓形虫不影响LFA-1,VLA-4或MAC-1的表达或Mn2 +激活这些整联蛋白的能力。然而,弓形虫感染会损害整联蛋白配体,从而破坏LFA-1和VLA-4簇集和假足延伸。我们然后将相同的流体系统应用于细胞外寄生虫对内皮的粘附问题,并表明剪切力影响了寄生虫的粘附和运动动力学和寄生虫与内皮相互作用的结果。细胞外的寄生虫能够在剪切应力条件下粘附于人类原代内皮,有趣的是,剪切应力增强了弓形虫的螺旋滑动,从而导致了更大的位移。另外,剪切应力增加了侵入或迁移穿过内皮的速殖子的百分比。通过检查缺乏粘附蛋白MIC2的弓形虫,我们发现MIC2有助于初始粘附,但不是增强粘附所必需的。这些数据表明,在流体条件下,弓形虫对内皮的粘附可能是由相互作用的多步级联介导的,该相互作用是由粘附分子的独特组合决定的。本论文的工作使人们对T的机制有了更好的理解。刚地菌与内皮相互作用并在内皮中迁移进入组织,在该组织中,寄生虫最终导致疾病。

著录项

  • 作者

    Harker, Katherine Snyder.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Cellular biology.;Parasitology.;Immunology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号