首页> 外文学位 >Cobalt-based Magnetic Nanoparticles: Design, Synthesis and Characterization.
【24h】

Cobalt-based Magnetic Nanoparticles: Design, Synthesis and Characterization.

机译:钴基磁性纳米粒子:设计,合成和表征。

获取原文
获取原文并翻译 | 示例

摘要

The ever-increasing desire for more energy attainable from a smaller volume of matter has driven researchers to explore advanced materials at the molecular or even atomic size scale. Magnetic materials at the nanometer size scale have been the subject of enormous research effort worldwide for more than half a century. Different magnetic nanoparticles have shown different behavior in the absence and presence of an external magnetic field, which has led them to be categorized as soft (easy to demagnetize) or hard (resistive against demagnetization) magnets. Applications range from medical and biomedical devices to magnetic recording media and magnetic sensing have emphasized the importance of this class of materials. Soft magnetic phases have found application in power generation and magnetic targeted drug delivery, while hard magnets have been subject of extensive research for application as energy storage media. Discovery of the exchange-coupling phenomenon between the spins of two adjacent hard and soft magnetic phases which means taking advantage of both high magnetic moment of the soft phase as well as high coercivity of the hard phase has attracted scientists to develop advanced materials for energy storage with no usage of fossil fuels: clean energy.;In this Dissertation, synthesis of pure phase, soft FeCo nanoparticles with high magnetic moment and hard phase CoxC nanoparticles possessing high coercivity is reported. The polyol method (chemical co-precipitating at polyhydric alcohol as reducing agent) is used to make FeCo and Co xC nanoparticles and the effects of important reaction kinetics parameters on the structure and magnetic properties of the products are studied. Careful analysis of correlations between these parameters and the properties of the magnetic particles has made synthesis of FeCo and CoxC nanoparticles with desired properties possible. Fabrication of MnAlC-FeCo heterostructures as a rare earth-free alternative for high-performance permanent magnet is also reported. To synthesize MnAlC-FeCo, mechanical alloying and dry mixing of MnAlC and FeCo nanoparticles are accomplished followed by annealing in a furnace. Morphological and magnetic properties of the nanoparticles are obtained by scanning electron microscopy (SEM), x-ray diffractometry (XRD), vibrating sample magnetometry (VSM) and physical property measuring system (PPMS) magnetometry, respectively. Overall, the achieved results in this work enable synthesis of high moment FeCo and high coercivity CoxC with desired structure and magnetic properties obtained through polyol method. In particular, this Dissertation provides the technique to fabricate cobalt carbide nanoparticles without using rare earth elements as a catalyst or as heterogeneous seed nuclei at any stage: pre-processing, synthesis and post-processing.;Although the experimental results of this work suggest successful fabrication of desired materials, there are many unanswered questions and unresolved challenges regarding reaction mechanism and optimizing the magnetic properties of these materials. Therefore, some recommendations are provided at the end of this Dissertation for further studies and future work. It should be noted that, implementing first principal calculations on these particles will provide better explanations and enable prediction of structure and magnetic properties of the nanoparticles and facilitate designing more complex heterostructures.
机译:人们越来越希望从更小的物质中获得更多的能量,这驱使研究人员探索分子或什至原子尺寸尺度的先进材料。在半个多世纪的时间里,纳米尺寸的磁性材料一直是全球范围内大量研究工作的主题。在不存在和存在外部磁场的情况下,不同的磁性纳米粒子表现出不同的行为,这导致它们被分类为软(易于退磁)或硬(抗退磁)磁体。应用范围从医学和生物医学设备到磁记录介质和磁传感,都强调了这类材料的重要性。已发现软磁相已应用于发电和磁性靶向药物输送,而硬磁体已被广泛研究用作能量存储介质。在两个相邻的硬磁和软磁相的自旋之间发现交换耦合现象,这意味着要利用软相的高磁矩和硬相的高矫顽力吸引了科学家开发出先进的储能材料本论文研究了纯相,高磁矩的软FeCo纳米颗粒和具有高矫顽力的硬相CoxC纳米颗粒的合成。采用多元醇法(在多元醇上化学共沉淀作为还原剂)制备FeCo和Co xC纳米粒子,研究了重要的反应动力学参数对产物结构和磁性的影响。仔细分析这些参数与磁性粒子的性能之间的相关性,使得合成具有所需性能的FeCo和CoxC纳米粒子成为可能。还报道了制造MnAlC-FeCo异质结构作为高性能永磁体的无稀土替代品的情况。为了合成MnAlC-FeCo,需要进行机械合金化以及MnAlC和FeCo纳米颗粒的干混,然后在炉中进行退火。纳米粒子的形态和磁性能分别通过扫描电子显微镜(SEM),X射线衍射法(XRD),振动样品磁力法(VSM)和物理性能测量系统(PPMS)磁力法获得。总体而言,这项工作中取得的成果使得能够合成具有通过多元醇法获得的所需结构和磁性的高弯矩FeCo和高矫顽力CoxC。特别地,本论文提供了在任何阶段都无需使用稀土元素作为催化剂或非均质种子核而制备碳化钴纳米颗粒的技术:尽管这项工作的实验结果表明成功了制造所需材料时,关于反应机理和优化这些材料的磁性能,存在许多未解决的问题和未解决的挑战。因此,在本论文的最后提供了一些建议,以供进一步研究和将来的工作之用。应该注意的是,对这些颗粒进行第一原理计算将提供更好的解释,并能够预测纳米颗粒的结构和磁性,并有助于设计更复杂的异质结构。

著录项

  • 作者

    Zamanpour, Mehdi.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Engineering Materials Science.;Nanotechnology.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号