首页> 外文学位 >Utilisation de la methode des elements finis non-lineaires pour la conception des structures en beton arme: Application aux structures massives.
【24h】

Utilisation de la methode des elements finis non-lineaires pour la conception des structures en beton arme: Application aux structures massives.

机译:非线性有限元方法在钢筋混凝土结构设计中的应用:在大型结构中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear finite elements for concrete structures have seen a remarkable advancement in the last half century with more emphasis on constitutive modelling of reinforced and non-reinforced concrete. Applications were restricted to the analysis of simple structures (beams, columns, slabs...etc.), comparisons to experimental tests, and rarely extended to the design of complex structures. Many reasons lie behind this fact. The first is the difficulty to implement such analyses for complex structures: large computation time with respect to conventional linear analyses, and convergence problems generally related to concrete softening. The second important reason is the complexity of the concrete material and the existence of a multitude of models and theories in the literature. Finally, there is a lack in the literature and international codes concerning the reliability framework and the limit state design using nonlinear analyses. The current work presents solutions to these issues and applications in the field of large reinforced concrete structures. To address the first problem, the quasi-static explicit solver algorithm is presented in this work, as an alternative to the conventional static implicit solver. Effectiveness of the explicit solver algorithm compared to the standard implicit one is demonstrated. It is shown through validations that, analysis of complex models with highly non-linear behaviour is being possible without the need for iterations. To address the second and third problems, a methodology that uses nonlinear finite elements analysis for determining a global resistance factor for the design of reinforced concrete structures is suggested. A new reliability approach is introduced, which takes into account the uncertainties of the material properties and the performance of the concrete model used in the calculations. In a first step, estimation of the coefficient of variation of the prediction error is performed for a given concrete model, nonlinear finite element package and a target design structure (TDS). In a second step, the global resistance factor is computed following a procedure in which the coefficient of variation of the calculated resistance is estimated using Rosenblueth's point estimate method. Robustness and simplicity of this method are demonstrated. The suggested methodology is well suited for structural engineers having access to non-linear deterministic finite element packages with concrete models.;Application of this general methodology is presented for the case of large hydraulic structures. The draft tube structure which is a typical component of a powerhouse with large members and non conventional boundary conditions is taken as the TDS. Following the two-step procedure, the model error is firstly computed for two candidate concrete models: EPM3D and CDP. The validation process is undertaken from material to structural levels. Importance of considering the statistical size effect of the concrete is outlined in the calibration procedure at the material level and a new expression for the equivalent tensile strength is suggested. It is shown through this process that the use of only the compressive strength of the concrete and the yield strength of reinforcement are sufficient with EPM3D model to obtain relatively low coefficient of variation of model error. Using this selected concrete model and its corresponding model error, the global resistance factor is computed in a second step for the TDS. Effects of temperature, nominal shear reinforcement and lateral confinement are discussed. As an additional application, the shear size effect is investigated for very large concrete members without shear reinforcement. It is shown that, contrarily to some recent design code equations, the tendency of shear strength is much less sensitive to size effects for very large members. It is shown that for the case of a uniformly loaded beam, the macro size effect in shear tends asymptotically to the meso statistical size effect in tension previously identified at the material level in the first step.;Keywords: nonlinear analysis, finite element, concrete model, explicit algorithm, global safety factor, limit state design, hydraulic structures, design and assessment, verification & validation, size effect.
机译:在过去的半个世纪中,混凝土结构的非线性有限元取得了显着进步,其中更多的是对钢筋混凝土和非钢筋混凝土的本构模型的研究。应用仅限于简单结构(梁,柱,平板等)的分析,与实验测试的比较,而很少扩展到复杂结构的设计。这个事实背后有许多原因。首先是难以对复杂结构进行此类分析:相对于常规线性分析而言,计算时间较长,并且通常存在与混凝土软化有关的收敛性问题。第二个重要原因是具体材料的复杂性以及文献中存在许多模型和理论。最后,缺乏关于使用非线性分析的可靠性框架和极限状态设计的文献和国际规范。当前的工作为大型钢筋混凝土结构领域中的这些问题和应用提供了解决方案。为了解决第一个问题,本文提出了准静态显式求解器算法,以替代传统的静态隐式求解器。证明了与标准隐式算法相比,显式求解器算法的有效性。通过验证表明,无需迭代即可对具有高度非线性行为的复杂模型进行分析。为了解决第二个和第三个问题,提出了一种使用非线性有限元分析来确定钢筋混凝土结构设计的整体阻力因子的方法。引入了一种新的可靠性方法,该方法考虑了材料特性的不确定性以及计算中使用的混凝土模型的性能。第一步,对给定的混凝土模型,非线性有限元软件包和目标设计结构(TDS)进行预测误差变化系数的估计。在第二步骤中,按照以下程序计算全局电阻系数,在该程序中,使用Rosenblueth的点估计方法估计所计算的电阻的变化系数。证明了该方法的鲁棒性和简便性。所建议的方法非常适合具有混凝土模型的非线性确定性有限元程序包的结构工程师。该通用方法在大型水工结构中的应用。引流管结构是TDS的一部分,该结构是具有大型构件和非常规边界条件的动力室的典型组件。按照两步过程,首先为两个候选具体模型计算模型误差:EPM3D和CDP。验证过程从材料级别到结构级别。在材料级别的校准程序中概述了考虑混凝土的统计尺寸效应的重要性,并提出了等效抗拉强度的新表达式。通过此过程表明,对于EPM3D模型,仅使用混凝土的抗压强度和钢筋的屈服强度就足以获得相对较低的模型误差变异系数。使用此选定的具体模型及其相应的模型误差,在第二步中为TDS计算全局阻力系数。讨论了温度,名义抗剪钢筋和侧向约束的影响。作为附加应用,对没有剪切补强的超大型混凝土构件的剪切尺寸效应进行了研究。结果表明,与最近的一些设计规范方程相反,对于很大的构件,剪切强度的趋势对尺寸效应的敏感度要低得多。结果表明,对于均匀加载的梁,在剪切中的宏观尺寸效应趋于渐近于在第一步在材料层上预先确定的拉力的细观统计尺寸效应。;关键词:非线性分析,有限元,混凝土模型,显式算法,全局安全系数,极限状态设计,水工结构,设计与评估,验证与确认,尺寸效应。

著录项

  • 作者

    Ben Ftima, Mahdi.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号