首页> 外文学位 >Non-Precious Metal Based Electrocatalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells and Electrolyzers.
【24h】

Non-Precious Metal Based Electrocatalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells and Electrolyzers.

机译:用于质子交换膜燃料电池和电解槽中氧气还原的非贵金属基电催化剂。

获取原文
获取原文并翻译 | 示例

摘要

The oxygen reduction reaction (ORR) is a key process in various electrochemical energy conversion devices such as fuel cells and metal batteries as it enables CO2-free electrical energy generation. One of the major challenges in these devices is the sluggish kinetics of ORR and thus the need for stable and highly active electrocatalysts. The currently utilized catalytic materials are based on precious group metals (PGM), including platinum, rhodium, or silver. Although the PGM-based catalysts are highly active and reasonably stable under harsh acidic fuel cell conditions, the PGM-systems contribute to high cost of the energy conversion device. This is further aggravated by the high sensitivity of the PGM-catalysts to the presence of small amounts of impurities in the real world environment causing performance decay. These challenges pushed researchers to look for a cost-effective and highly active alternate catalyst materials based on non-precious group metals (non-PGM). Currently, the most promising non-PGM systems are comprised of transition metal-nitrogen-carbon (M-N-C) containing catalysts. Despite several decades of effort to obtain the "perfect" M-N-C catalyst, there is still a fair amount of work to be done mainly towards understanding the origin of ORR activity in these complex M-N-C systems. The objective in these studies is to design the optimal active structure that is able to provide high and selective performance sustained even in very corrosive environments. Element-specific in-situ X-ray absorption spectroscopy (XAS) coupled with standard electrochemical methodology (mainly Rotating Ring Disc Eelectrode, RRDE) is a great tool to study surface active catalytic systems. With a careful experimental design, in-situ XAS is able to provide very useful mechanistic information regarding structural properties of the active centers and their behavior in simulated electrochemical environments.;Chapter 1 contains a brief description of fundamental aspects of the oxygen reduction reaction, and related challenges. This includes: electrolyte-dependent general description of the ORR mechanistic pathways, and currently known relations between electronic/structural properties of known PGM and non-PGM materials and their catalytic activity. The major electroanalytical and spectroscopic techniques are also discussed, aiming to provide introductory information to the reader needed to understand the experimental work discussed in the following chapters. As the main point of interest is ORR kinetics, which comprise the performance and degradation modes in an aqueous environment, Chapter 2 discusses comparative characteristics of mechanistic ORR pathways (in acid and alkaline media) with a group of the M-N-C catalysts synthesized via various routes. The electroanalytical studies shown in Chapter 2 are followed by more detailed mechanistic investigations (in Chapter 3) wherein the ORR kinetics on the M-N-C catalysts is investigated using in-situ spectro-electrochemical XAS methodologies of transition metal centers. Different forms of the metals and their mechanistic roles are investigated by ORR kinetic studies and behavioral monitoring after selective removal or blocking each of the moieties. The information obtained by the mechanistic studies are used in Chapter 4 to discuss the effect of chloride anions on the overall M-N-C activity with the aim to predict their potential use as O2-consuming cathodes in industrial environments involving presence of the chloride species, known to be a strong poison for platinum-based catalysts. Finally, Chapter 5 shows performance non-PGM catalysts developed at NEU based on carbon supported polymer and self-supported Metal Organic Framework (MOF) iron comprising M-N-C catalysts as oxygen depolarized cathodes for recycling of chlorine gas from hydrochloric acid, a common bi-product in industrial chemical plants. Chapter 5 discusses structure-property relationship of the M-N-C catalysts, and their iron-based active centers to overall catalytic performance and stability in such corrosive environment as concentrated hydrochloric acid. The Chapter 5 also covers a promising preliminary study of utilization of the M-N-C catalysts as Oxygen De-polarized Cathodes (ODC) in the chlor-alkali process for Cl2-production. Finally, Chapter 6 summarized the work presented here and discusses future perspectives for applications of the non-PGM catalysts.
机译:氧还原反应(ORR)是各种电化学能量转换设备(例如燃料电池和金属电池)中的关键过程,因为它可以产生无CO2的电能。这些装置的主要挑战之一是ORR的动力学缓慢,因此需要稳定和高活性的电催化剂。当前使用的催化材料基于贵金属,包括铂,铑或银。尽管基于PGM的催化剂在苛刻的酸性燃料电池条件下具有很高的活性和相当稳定的性能,但PGM系统却导致了能量转换装置的高成本。 PGM催化剂对现实环境中少量杂质的存在造成性能下降的高度敏感性进一步加剧了这种情况。这些挑战促使研究人员寻找一种基于非贵金属(non-PGM)的高性价比,高活性的替代催化剂材料。当前,最有前途的非PGM系统由含过渡金属氮碳(M-N-C)的催化剂组成。尽管为获得“完美的” M-N-C催化剂付出了数十年的努力,但仍需要做大量工作,主要是要了解这些复杂的M-N-C系统中ORR活性的起源。这些研究的目的是设计一种最佳的活性结构,该结构即使在非常腐蚀的环境下也能提供较高的选择性性能。特定于元素的原位X射线吸收光谱(XAS)与标准电化学方法(主要是旋转环盘电极,RRDE)结合使用,是研究表面活性催化系统的重要工具。通过精心的实验设计,原位XAS能够提供有关活性中心的结构性质及其在模拟电化学环境下的行为的非常有用的机理信息。;第1章简要介绍了氧还原反应的基本方面,以及相关挑战。这包括:ORR机理途径的电解质依赖性一般描述,以及已知PGM和非PGM材料的电子/结构性质与其催化活性之间的当前已知关系。还讨论了主要的电分析和光谱技术,目的是向需要了解以下各章中讨论的实验工作的读者提供入门信息。作为主要关注点是ORR动力学,它包括在水性环境中的性能和降解模式,因此第2章讨论了机械ORR途径(在酸性和碱性介质中)与一组通过各种途径合成的M-N-C催化剂的比较特征。在第2章中进行的电分析研究之后,进行了更详细的机理研究(在第3章中),其中使用过渡金属中心的原位光谱电化学XAS方法研究了M-N-C催化剂上的ORR动力学。在选择性除去或封闭每个部分后,通过ORR动力学研究和行为监测研究了不同形式的金属及其机理作用。通过机理研究获得的信息将在第4章中讨论氯离子对MNC总体活性的影响,以预测其在涉及氯化物物种存在的工业环境中作为消耗氧气的阴极的潜在用途。铂基催化剂的强毒剂。最后,第5章显示了在NEU开发的高性能非PGM催化剂,其基于碳载聚合物和包含MNC催化剂的自载金属有机骨架(MOF)铁作为氧去极化阴极,用于回收盐酸(一种常见的副产品)中的氯气在工业化工厂。第5章讨论了M-N-C催化剂及其铁基活性中心在浓盐酸等腐蚀性环境中对整体催化性能和稳定性的结构-性质关系。第5章还涵盖了有前途的初步研究,该研究在氯碱生产Cl2的过程中将M-N-C催化剂用作氧气去极化阴极(ODC)。最后,第6章总结了此处介绍的工作,并讨论了非PGM催化剂应用的未来前景。

著录项

  • 作者

    Tylus, Urszula B.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Energy.;Materials science.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号