首页> 外文学位 >Global Biogeochemical Cycle of Silicon And Silicate Weathering during Soil Development.
【24h】

Global Biogeochemical Cycle of Silicon And Silicate Weathering during Soil Development.

机译:土壤发育过程中硅和硅酸盐风化的全球生物地球化学循环。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation contributes to the understanding of the biogeochemical cycle of silicon (Si), one of the important nutrient elements, and its coupling with other nutrient cycles, natural and human perturbations. A Silicon Land Ocean Ecosystem Model (SLOEM) is developed to simulate the exogenic physical transport, biological and abiotic transformation of Si on Land, Coastal Ocean and Open Ocean Domains. Si isotope subroutine is also incorporated in SLOEM to quantify Si productivities. The simulated trend is then compared against available Si isotopic records.;SLOEM.LGM, demonstrating Si cycle during Last Glacial Cycle, supports the temperature and nutrient (dust transport) controls of paleo-ocean productivity, particularly between opal formation by marine diatom and radiolarian abundances. The simulated results are consistent with sedimentary records in terms of opal vs radiolarian content, and opal delta30Si excursion.;SLOEM.MOD runs from the year 1700 to 2100 to model the Si cycle during Anthropocene. A possible cause of the increase of riverine discharge of dissolved Si (DSi) from 1700-1950 is the slash-and-burn deforestation which increases the release of plant phytoliths into the groundwater. Later, the use of fertilizers and other agricultural means for increasing crop yield and land primary production lead to a decrease of riverine DSi. After 1900, the loss of DSi is accelerated by the damming of major rivers. This effect alone accounts for 4 Tmol Si/yr decrease in DSi discharge from land to the ocean, which is more than half of the total DSi discharge. In addition, the increase in Coastal Ocean primary production by excessive nitrogen and phosphorus, warming, and scarcity of Si lowers the Si/N values. The ecosystem becomes vulnerable to environmental deterioration and shift from diatom bloom to, e.g. toxic algal bloom.;Chapter 5 presents a reactive-transport model used to examine tectonic and climatic controls on such process by characterizing regolith development. The model supports that the maximum contribution should occur for medium uplift rate regions of silicate bedrock consolidated in warm, wet climates, because the combination of medium tectonic uplift, high temperatures, and rapid seepage velocities accelerates reaction front propagation, facilitates calcite depletion, and sustains deep regolith development over long timescales.
机译:这篇论文有助于理解重要营养元素之一的硅的生物地球化学循环,以及它与其他营养循环,自然和人为干扰的耦合。开发了硅陆地海洋生态系统模型(SLOEM),以模拟硅在陆地,沿海海洋和大洋域上的外源物理运输,硅的生物和非生物转化。硅同位素子程序也包含在SLOEM中以量化硅生产率。然后将模拟趋势与可用的Si同位素记录进行比较。; SLOEM.LGM,展示了上一次冰河周期中的Si周期,支持了温度和营养物(粉尘的运输)对古海洋生产力的控制,特别是在海洋硅藻和放射虫形成蛋白石之间丰富。模拟结果与沉积记录在蛋白石与放射虫含量和蛋白石delta30Si偏移方面是一致的; SLOEM.MOD从1700年到2100年运行,以模拟人类世的Si周期。从1700-1950年开始河水中溶解的Si(DSi)排放增加的可能原因是砍伐和烧毁森林,这增加了植物植硅石向地下水的释放。后来,肥料和其他农业手段的使用增加了农作物的产量和土地初级生产,导致河流DSi减少。 1900年以后,主要河流的筑坝加速了DSi的损失。仅这种影响就导致从陆地到海洋的DSi排放量减少了4 Tmol Si / yr,这是DSi排放总量的一半以上。此外,氮和磷过多,变暖和硅稀缺增加了沿海海洋初级生产力,从而降低了硅/氮值。生态系统变得容易受到环境恶化的影响,并从硅藻绽放转变为例如第5章介绍了一种反应性运输模型,该模型用于通过表征re石的发育来检查这种过程的构造和气候控制。该模型支持在温暖湿润的气候条件下固结的硅酸盐基岩的中等隆升速率区域应发挥最大作用,因为中等构造隆升,高温和快速渗流速度的结合可加速反应锋面的传播,促进方解石耗竭并维持长期进行深层灰岩开发。

著录项

  • 作者

    Li, Dan Darcy.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Geology.;Geochemistry.;Environmental geology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号