首页> 外文学位 >Functional Evaluation of Noncovalent Interactions in Neuroreceptors and Progress Toward the Expansion of Unnatural Amino Acid Methodology.
【24h】

Functional Evaluation of Noncovalent Interactions in Neuroreceptors and Progress Toward the Expansion of Unnatural Amino Acid Methodology.

机译:神经受体非共价相互作用的功能评估和非天然氨基酸方法学扩展的进展。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation primarily describes chemical-scale studies of G protein-coupled receptors and Cys-loop ligand-gated ion channels to better understand ligand binding interactions and the mechanism of channel activation using recently published crystal structures as a guide. These studies employ the use of unnatural amino acid mutagenesis and electrophysiology to measure subtle changes in receptor function.;In chapter 2, the role of a conserved aromatic microdomain predicted in the D3 dopamine receptor is probed in the closely related D2 and D4 dopamine receptors. This domain was found to act as a structural unit near the ligand binding site that is important for receptor function. The domain consists of several functionally important noncovalent interactions including hydrogen bond, aromatic-aromatic, and sulfur-pi interactions that show strong couplings by mutant cycle analysis. We also assign an alternate interpretation for the linear fluorination plot observed at W6.48, a residue previously thought to participate in a cation-pi interaction with dopamine.;Chapter 3 outlines attempts to incorporate chemically synthesized and in vitro acylated unnatural amino acids into mammalian cells. While our attempts were not successful, method optimizations and data for nonsense suppression with an in vivo acylated tRNA are included. This chapter is aimed to aid future researchers attempting unnatural amino acid mutagenesis in mammalian cells.;Chapter 4 identifies a cation-pi interaction between glutamate and a tyrosine residue on loop C in the GluClbeta receptor. Using the recently published crystal structure of the homologous GluCl&agr; receptor, other ligand-binding and protein-protein interactions are probed to determine the similarity between this invertebrate receptor and other more distantly related vertebrate Cys-loop receptors. We find that many of the interactions previously observed are conserved in the GluCl receptors, however care must be taken when extrapolating structural data.;Chapter 5 examines inherent properties of the GluCl&agr; receptor that are responsible for the observed glutamate insensitivity of the receptor. Chimera synthesis and mutagenesis reveal the C-terminal portion of the M4 helix and the C-terminus as contributing to formation of the decoupled state, where ligand binding is incapable of triggering channel gating. Receptor mutagenesis was unable to identify single residue mismatches or impaired protein-protein interactions within this domain. We conclude that M4 helix structure and/or membrane dynamics are likely the cause of ligand insensitivity in this receptor and that the M4 helix has an role important in the activation process.
机译:本文主要描述了G蛋白偶联受体和Cys环配体门控离子通道的化学规模研究,以最近发表的晶体结构为指导,更好地了解配体结合相互作用和通道激活的机理。这些研究利用非天然氨基酸诱变和电生理学来测量受体功能的细微变化。在第二章中,在紧密相关的D2和D4多巴胺受体中探讨了D3多巴胺受体中预测的保守芳香族微区的作用。发现该结构域充当对受体功能重要的配体结合位点附近的结构单元。该域由几个功能上重要的非共价相互作用组成,包括氢键,芳族-芳香族和硫-π相互作用,这些相互作用通过突变周期分析显示出强耦合性。我们还为W6.48处观察到的线性氟化图指定了另一种解释,该残基以前被认为参与与多巴胺的阳离子-pi相互作用。;第3章概述了将化学合成和体外酰化的非天然氨基酸引入哺乳动物的尝试细胞。尽管我们的尝试没有成功,但其中包括方法优化和体内酰基化tRNA的无意义抑制的数据。本章旨在帮助未来的研究人员尝试在哺乳动物细胞中进行非天然氨基酸诱变。;第4章确定了谷氨酸和GluClbeta受体C环上酪氨酸残基之间的阳离子-π相互作用。使用最近发表的同源GluCl&agr;的晶体结构。受体,其他配体结合和蛋白质-蛋白质相互作用被探测以确定此无脊椎动物受体与其他更远相关的脊椎动物半胱氨酸环受体之间的相似性。我们发现以前观察到的许多相互作用在GluCl受体中都是保守的,但是在推断结构数据时必须小心。;第5章研究了GluCl&agr的固有特性。负责观察到的受体谷氨酸不敏感性的受体。嵌合体合成和诱变揭示了M4螺旋的C末端部分和C末端有助于形成解偶联状态,其中配体结合不能触发通道门控。受体诱变无法识别此域内的单个残基错配或受损的蛋白质间相互作用。我们得出结论,M4螺旋结构和/或膜动力学可能是该受体中配体不敏感的原因,并且M4螺旋在激活过程中具有重要作用。

著录项

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Biochemistry.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号