首页> 外文学位 >Crystals that count! Physical principles and experimental investigations of DNA tile self-assembly.
【24h】

Crystals that count! Physical principles and experimental investigations of DNA tile self-assembly.

机译:水晶很重要! DNA瓷砖自组装的物理原理和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

Algorithmic DNA tiles systems are fascinating. From a theoretical perspective, they can result in simple systems that assemble themselves into beautiful, complex structures through fundamental interactions and logical rules. As an experimental technique, they provide a promising method for programmably assembling complex, precise crystals that can grow to considerable size while retaining nanoscale resolution. In the journey from theoretical abstractions to experimental demonstrations, however, lie numerous challenges and complications.;In this thesis, to examine these challenges, we consider the physical principles behind DNA tile self-assembly. We survey recent progress in experimental algorithmic self-assembly, and explain the simple physical models behind this progress. Using direct observation of individual tile attachments and detachments with an atomic force microscope, we test some of the fundamental assumptions of the widely-used kinetic Tile Assembly Model, obtaining results that fit the model to within error. We then depart from the simplest form of that model, examining the effects of DNA sticky end sequence energetics on tile system behavior. We develop theoretical models, sequence assignment algorithms, and a software package, StickyDesign, for sticky end sequence design.;As a demonstration of a specific tile system, we design a binary counting ribbon that can accurately count from a programmable starting value and stop growing after overflowing, resulting in a single system that can construct ribbons of precise and programmable length. In the process of designing the system, we explain numerous considerations that provide insight into more general tile system design, particularly with regards to tile concentrations, facet nucleation, the construction of finite assemblies, and design beyond the abstract Tile Assembly Model.;Finally, we present our crystals that count: experimental results with our binary counting system that represent a significant improvement in the accuracy of experimental algorithmic self-assembly, including crystals that count perfectly with 5 bits from 0 to 31. We show some preliminary experimental results on the construction of our capping system to stop growth after counters overflow, and offer some speculation on potential future directions of the field.
机译:算法DNA切片系统令人着迷。从理论上讲,它们可以产生简单的系统,这些系统通过基本的交互作用和逻辑规则将自身组装成美观,复杂的结构。作为一项实验技术,它们提供了一种有前途的方法,可用于以编程方式组装复杂,精确的晶体,该晶体可以生长到相当大的尺寸,同时保持纳米级分辨率。然而,在从理论抽象到实验演示的过程中,存在许多挑战和复杂性。在本论文中,为了研究这些挑战,我们考虑了DNA瓷砖自组装背后的物理原理。我们调查了实验算法自组装的最新进展,并解释了该进展背后的简单物理模型。通过使用原子力显微镜直接观察单个瓷砖的附着和分离,我们测试了广泛使用的动力学瓷砖装配模型的一些基本假设,获得了适合模型的误差范围内的结果。然后,我们脱离该模型的最简单形式,研究了DNA粘性末端序列能量学对瓷砖系统行为的影响。我们开发了理论模型,序列分配算法以及用于粘性末端序列设计的软件包StickyDesign。;作为特定图块系统的演示,我们设计了可以从可编程起始值精确计数并停止增长的二进制计数功能区。溢出后,形成一个可以构造精确且可编程长度的色带的系统。在设计系统的过程中,我们解释了许多考虑因素,这些见解可为更一般的瓷砖系统设计提供见识,尤其是在瓷砖浓度,刻面成核,有限装配的构造以及抽象瓷砖装配模型之外的设计方面。我们提供了可计数的晶体:使用我们的二进制计数系统的实验结果表示实验算法自组装精度的显着提高,其中包括从0到31的5位完美计数的晶体。我们建立封顶系统,以在计数器溢出后停止增长,并为该领域的潜在未来方向提供一些推测。

著录项

  • 作者

    Evans, Constantine Glen.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Biophysics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号