首页> 外文学位 >Toward Understanding the Thermodynamics and Mechanisms of Actinide Sorption Reactions.
【24h】

Toward Understanding the Thermodynamics and Mechanisms of Actinide Sorption Reactions.

机译:旨在了解Act系元素吸附反应的热力学和机理。

获取原文
获取原文并翻译 | 示例

摘要

The environmental fate of actinides is greatly influenced by interfacial reactions, including sorption onto solid surfaces. Because changes in the primary hydration sphere of the actinide are expected to greatly influence the thermodynamics (i.e., reaction enthalpy and entropy) of these reactions, examining actinide sorption thermodynamics may provide insight into actinide sorption mechanisms. Additionally, examining actinide sorption thermodynamics may enhance the ability to model or predict these reactions in environmental or engineered systems where variable or elevated temperatures are expected. However, few researchers have studied actinide sorption thermodynamics. Therefore, this research examined the thermodynamics of Eu(III) (a trivalent actinide analog), Th(IV), Np(V), U(VI), and Pu(IV) sorption onto hematite (&agr;--Fe 2O3) using a combination of macroscopic techniques, including multiple-temperature batch sorption experiments, surface complexation modeling, and isothermal titration calorimetry (ITC).;Batch sorption data collected at 15, 25, 35, and 50 °C (and 65 or 80 °C in some experiments) at I = 0.01 M NaCl indicate that sorption of both Eu(III) and U(VI) increases with increasing temperature. Np(V) and Th(IV) sorption onto hematite was independent of temperature. Pu(IV) sorption onto hematite appeared to increase with increasing temperature, but significant changes in Pu oxidation state during the experiments complicated interpretation of the data. The diffuse layer model (DLM) was employed for all batch sorption data. Modeling results suggested that both Eu(III) and U(VI) form bidentate inner-sphere surface complexes, in agreement with data from extended X-ray absorption fine structure (EXAFS) spectroscopy either collected in this work (for Eu(III)) or referenced from available literature. Surface complexation modeling of the Np(V) and Th(IV) sorption edge data suggested the preferential formation of monodentate surface complexes, which was in disagreement with the speciation suggested from referenced EXAFS and Fourier-transform infrared (FT--IR) spectroscopies. For Eu(III) sorption onto hematite, a van't Hoff analysis indicated that the reaction enthalpy and entropy for the formation of (≡FeO)2Eu+ (the best fit surface complex) were 131 +/- 8 kJ/mol and 439 +/- 26 J/K/mol, respectively; the sorption enthalpy determined from ITC experiments was in excellent agreement. For U(VI) sorption onto hematite, several surface complexes were proposed from the surface complexation modeling results, depending on reaction temperature. However, the reaction enthalpy and entropy for the formation of (≡FeOH)2UO22+ were less than the enthalpy and entropy determined for the Eu(III)-hematite complex. These results, in combination with collected and referenced EXAFS data that suggest a greater U--Fe distance compared with Eu--Fe, support that the interaction between U(VI) and the hematite surface is thermodynamically weaker than the interaction between Eu(III) and the hematite surface. The enthalpies approximated for Np(V) and Th(IV) sorption onto hematite were ≈ 0 kJ/mol, possibly indicating the formation of a combination of outer- and inner-sphere complexes on the hematite surface. This work presents the first systematic study on the thermodynamics of actinide sorption reactions, and provides the framework needed to understand the thermodynamics and mechanisms of actinide sorption onto other minerals, soils, or sediments under other experimental conditions.
机译:act系元素的环境命运受界面反应(包括吸附到固体表面上)的影响很大。由于预计the系元素一级水化层的变化会极大地影响这些反应的热力学(即反应焓和熵),因此研究act系元素吸附的热力学可以深入了解act系元素的吸附机理。此外,检查act系元素吸附的热力学可以增强在预期温度可变或升高的环境或工程系统中对这些反应进行建模或预测的能力。但是,很少有研究者研究act系元素的吸附热力学。因此,这项研究研究了Eu(III)(三价act系类似物),Th(IV),Np(V),U(VI)和Pu(IV)在赤铁矿(aFe-O 2O3)上的吸附热力学。使用宏观技术的组合,包括多温度批量吸附实验,表面络合建模和等温滴定量热法(ITC);在15、25、35和50°C(以及65或80°C)下收集的批量吸附数据在某些实验中)在I = 0.01 M NaCl时,表明Eu(III)和U(VI)的吸附均随温度升高而增加。 Np(V)和Th(IV)在赤铁矿上的吸附与温度无关。 Pu(IV)在赤铁矿上的吸附似乎随温度的升高而增加,但是在实验过程中Pu氧化态的显着变化使数据解释变得复杂。扩散层模型(DLM)用于所有批次吸附数据。建模结果表明,Eu(III)和U(VI)均形成了双齿内球表面配合物,与这项工作中收集到的扩展X射线吸收精细结构(EXAFS)光谱数据(对于Eu(III))一致或参考现有文献。 Np(V)和Th(IV)吸附边缘数据的表面络合模型表明优先形成单齿表面络合物,这与参考EXAFS和傅立叶变换红外(FT--IR)光谱学建议的形态不符。对于Eu(III)在赤铁矿上的吸附,van't Hoff分析表明,形成(≡FeO)2Eu +(最佳拟合表面配合物)的反应焓和熵为131 +/- 8 kJ / mol和439 + /-分别为26 J / K / mol;从ITC实验确定的吸附焓非常吻合。对于U(VI)在赤铁矿上的吸附,根据反应温度,从表面络合模型结果中提出了几种表面络合物。但是,形成(≡FeOH)2UO22 +的反应焓和熵小于Eu(III)-赤铁矿配合物的焓和熵。这些结果,与收集和参考的EXAFS数据相结合,表明与Eu-Fe相比,U-Fe距离更大,支持U(VI)和赤铁矿表面之间的相互作用在热力学上比Eu(III)之间的相互作用弱。 )和赤铁矿表面。 Np(V)和Th(IV)吸附在赤铁矿上的焓近似为≈ 0 kJ / mol,可能表明赤铁矿表面形成了外球和内球复合物。这项工作是on系元素吸附反应热力学的第一个系统研究,并为了解needed系元素在其他实验条件下吸附到其他矿物,土壤或沉积物上的热力学和机理提供了必要的框架。

著录项

  • 作者

    Estes, Shanna L.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Environmental engineering.;Inorganic chemistry.;Geochemistry.;Organic chemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号