首页> 外文学位 >Processing and characterization of zeta-Ta4C 3-x: A high toughness tantalum carbide.
【24h】

Processing and characterization of zeta-Ta4C 3-x: A high toughness tantalum carbide.

机译:zeta-Ta4C 3-x的加工和表征:高韧性碳化钽。

获取原文
获取原文并翻译 | 示例

摘要

Tantalum carbides are commonly processed by hot-pressing, canned hot-isostatic-pressing, or spark-plasma sintering because of their high melting temperatures and low diffusivities. This study reports processing of dense &zgr;-Ta4C 3-x by reaction sintering of a Ta and TaC powder mixture (C/Ta atomic ratio = 0.66). &zgr;-Ta4C3-x is of interest due to its rhombohedral (trigonal) crystal structure that may be characterized as a polytype with both face-centered-cubic (fcc) and hexagonal-close-packed (hcp) Ta stacking sequences interrupted by stacking faults and missing carbon layers. This structure leads to easy cleaving on the basal planes and high fracture toughness.;A key step in processing is the hydrogenation of the Ta powder to produce beta-TaH x, a hard and brittle phase that enables efficient comminution during milling and production of small, equiaxed Ta particles that can be packed to high green density with the TaC powder. Studies of phase evolution by quantitative X-ray diffraction during sintering revealed several intermediate reactions: (a) decomposition of beta-TaHx to Ta, (b) diffusion of C from gamma-TaC to Ta leading to the formation of &agr;-Ta2Cy' with the kinetics described by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation with an exponent, n = 0.5, and an activation energy of 221 kJ/mole, (c) equilibration of &agr;-Ta2Cy' and gamma-TaC 0.78 phases, and (d) formation of &zgr;-Ta4C2.56 from the equilibrated &agr;-Ta2C and gamma-TaC0.78 phases with the kinetics characterized by a higher JMAK exponent ( n ≈ 3) and higher activation energy (1089 kJ/mole). The microstructure showed evidence of nucleation and growth of the &zgr;-Ta4C 2.56 phase in both the &agr;-Ta2C and gamma-TaC0.78 parent phases with distinct difference in the morphology due to the different number of variants of the habit plane.;A hot-pressed and hot-isostatic-pressed (HIPed) material (C/Ta atomic ratio = 0.66), having formed 95 w% &zgr;-phase, attained a fracture toughness of 15.6 +/- 0.5 MPa√m and a fracture strength of 508 +/- 97 MPa, while a pressureless sintered and HIPed counterpart, having formed 89 w% &zgr;-phase and 11 w% gamma-TaC0.78, attained a fracture toughness of 13.7 +/- 0.3 MPa√m and a fracture strength of 679 +/- 56 MPa. All &zgr;-phase containing materials showed rising R-curves. The high fracture toughness and rising R-curve were attributed to ligament bridging across the crack face. The ligaments, called lamella, were formed as a result of weak cleavage planes in the basal plane of the &zgr;-Ta4C 3-x crystal.
机译:碳化钽由于其高熔化温度和低扩散性,通常通过热压,罐装热等静压或火花等离子烧结进行加工。该研究报告了通过Ta和TaC粉末混合物(C / Ta原子比= 0.66)的反应烧结来处理致密的-Ta4C 3-x的过程。 -zTa4C3-x令人关注,因为它的菱面体(三角形)晶体结构可以被表征为面心立方(fcc)和六角密堆积(hcp)Ta堆叠序列被堆叠中断的多型体断层和碳层缺失。这种结构导致在基面上容易劈开并具有较高的断裂韧性。;加工中的关键步骤是Ta粉末的加氢生成β-TaHx,β-TaHx是一种硬而脆的相,能够在研磨和小批量生产中有效地粉碎。 ,等轴的Ta颗粒可以与TaC粉末一起填充到高绿色密度。烧结过程中通过定量X射线衍射进行的相演化研究显示了几种中间反应:(a)β-TaHx分解为Ta,(b)C从γ-TaC扩散到Ta中导致形成-aTa2Cy'具有Johnson-Mehl-Avrami-Kolmogorov(JMAK)方程描述的动力学,指数为n = 0.5,活化能为221 kJ / mol,(c)平衡-aTa2Cy'和γ-TaC0.78相,以及(d)由平衡的-Ta2C和γ-TaC0.78相形成-zTa4C2.56,其动力学特征在于更高的JMAK指数(n≈ 3)和更高的活化能(1089 kJ /痣)。微观结构显示了在-aTa2C和gamma-TaC0.78母体相中-zTa4C 2.56相成核和生长的证据,由于习性平面变体的数量不同,其形貌也存在明显差异。形成95 w%的z相的热压和热等静压(HIPed)材料(C / Ta原子比= 0.66),断裂韧性为15.6 +/- 0.5MPa√m,并且断裂强度为508 +/- 97 MPa,而形成了89 w%的zgr;相和11 w%的gamma-TaC0.78的无压烧结和HIP烧结件,其断裂韧性为13.7 +/- 0.3MPa√m。断裂强度为679 +/- 56 MPa。所有含z相的材料均显示R曲线上升。较高的断裂韧性和上升的R曲线归因于韧带在裂纹面上的桥接。韧带(称为薄片)是由于在-zTa4C 3-x晶体的基面中有较弱的分裂面而形成的。

著录项

  • 作者

    Sygnatowicz, Michael M.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Materials science.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号