首页> 外文学位 >Vortex Dynamics and Induced Pressure/Load Fluctuations During Blade-Vortex Interactions.
【24h】

Vortex Dynamics and Induced Pressure/Load Fluctuations During Blade-Vortex Interactions.

机译:叶片-涡流相互作用期间的涡流动力学和诱导的压力/负载波动。

获取原文
获取原文并翻译 | 示例

摘要

A comprehensive study on vortex dynamics during parallel blade-vortex interaction (BVI) was conducted in a subsonic wind tunnel. A vortex was generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and then interacted with an unloaded target airfoil placed downstream. Both Particle Image Velocimetry (PIV) and unsteady pressure measurements were performed to investigate the vortex dynamics during BVI, as well as its impact on the induced pressure and load fluctuations. The Reynolds number ranges of PIV and pressure measurements are 80,000 to 115,000, and 170,000 to 250,000, respectively.;Based on the PIV data, the interaction was classified into three categories in terms of vortex behavior: close interaction, very close interaction and direct interaction. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, vortex strength (G) and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction), and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction with small separation distance is usually dominated by inviscid effects, in which the decay in vortex strength is due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes velocity field and shear stress near the surface.;Unsteady pressure data on the target airfoil were acquired for each combination of Reynolds number, vortex strength and separation distance, yielding the magnitudes of pressure and load fluctuations in each case. Both pressure and load fluctuations show asymmetric distribution about h/c = 0, with generally larger fluctuations for h/c < 0 (clockwise vortex below the target airfoil). The maximum fluctuation occurs when a clockwise vortex is slightly below the target airfoil due to the high velocity on the lower side of the leading edge induced by the vortex. This peak in fluctuation level biases more toward h/c < 0 with a stronger vortex, due to its larger size. The load fluctuation level is dependent on both the velocity fields near the leading edge and the decay in vortex strength. However, the role of vortex decay becomes insignificant at higher Reynolds number due to less decay in the viscous-type interaction. The above findings suggest that the local velocity field around the leading edge of the target airfoil is critical in both the vortex dynamics and the induced pressure and load fluctuations. The magnitudes of fluctuations can be reduced by passing the airfoil below a clockwise vortex or above a counter-clockwise vortex.
机译:在亚音速风洞中对平行叶片-涡流相互作用(BVI)期间的涡流动力学进行了全面研究。通过通过气动系统对机翼进行快速俯仰运动而产生涡流,然后与下游的未加载目标机翼相互作用。进行了粒子图像测速(PIV)和非稳态压力测量,以研究BVI期间的涡旋动力学及其对感应压力和载荷波动的影响。 PIV和压力测量值的雷诺数范围分别为80,000至115,000和170,000至250,000。 。对于每种类型的相互作用,均会从相位平均PIV数据获得涡旋轨迹和强度变化。 PIV结果揭示了涡旋衰减的机理以及几个关键参数对涡旋动力学的影响,包括分离距离(h / c),雷诺数,涡旋强度(G)和涡旋感。通常,BVI具有两个主要阶段:涡旋和前沿之间的相互作用(涡旋-LE相互作用)以及涡旋和边界层之间的相互作用(涡旋-BL相互作用)。分离距离较小的涡流-LE相互作用通常以无粘性效应为主,其中涡旋强度的衰减是由于前缘附近的压力梯度引起的。因此,衰减率取决于分离距离和涡旋强度,但对雷诺数相对不敏感。如果有足够的分离距离,涡旋-LE相互作用将变成粘性类型的相互作用。涡旋-BL相互作用固有地由粘性效应决定,因此衰减率取决于雷诺数。涡旋感也影响涡旋-BL相互作用,因为它改变了表面附近的速度场和切应力。;对于雷诺数,涡旋强度和分离距离的每种组合,获得了目标翼型的非定常压力数据,得出了每种情况下的压力和负载波动。压力和载荷波动都显示出大约h / c = 0的不对称分布,通常在h / c <0(目标机翼下方的顺时针涡旋)时波动较大。当由于旋涡引起的前缘下侧的高速旋转,当顺时针旋涡略微低于目标机翼时,就会出现最大波动。由于其较大的大小,该波动水平的峰值在具有更强旋涡的情况下更倾向于h / c <0。负载波动水平取决于前缘附近的速度场和涡旋强度的衰减。但是,由于粘性类型相互作用的衰减较小,在较高的雷诺数下,涡旋衰减的作用变得微不足道。上述发现表明,目标翼型前缘周围的局部速度场对于涡旋动力学以及所引起的压力和载荷波动均至关重要。通过使翼型在顺时针涡旋下方或逆时针涡旋上方通过,可以减小波动的幅度。

著录项

  • 作者

    Peng, Di.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号