首页> 外文学位 >Zinc Oxide-based resistive switching devices.
【24h】

Zinc Oxide-based resistive switching devices.

机译:氧化锌基电阻开关器件。

获取原文
获取原文并翻译 | 示例

摘要

Recently, resistive switching (RS) memory devices have attracted increasing attentions due to their potential applications in the next-generation nonvolatile memory. Zinc Oxide (ZnO) - based RS devices possess promising features, such as well-controlled switching properties by in-situ doping and alloying, low-temperature fabrication processes, superior radiation hardness, and low cost. The goal of the research is to study the feasibility of using the transitional metal (TM) doped ZnO for making RS devices.;The Fe-doped ZnO (FeZnO) is used to make the bipolar and unipolar RS. The FeZnO is grown through MOCVD. Fe is a deep-level donor in ZnO, and Fe doping leads to better device thermal stability and larger value at the high resistance state (HRS) for switching. For the Ag/FeZnO/Pt bipolar RS structures, the ratio of the HRS over the low resistance state (LRS) of 3.8x10 2 is achieved. The dominant conduction mechanisms are attributed to the Poole-Frenkel emission at the HRS and Ohmic behavior at the LRS, respectively. A FeZnO/MgO bi-layer (BL) is used to replace the FeZnO single layer (SL) to form an Ag/FeZnO/MgO/Pt bipolar RS structure. This BL device demonstrates a higher RHRS/RLRS ratio (~106) than the SL counterpart. For the Au/FeZnO/MgO/Pt unipolar RS device, the R HRS/RLRS ratio of 2.4x106 at 1V is achieved.;In order to reduce the processing temperature, the Ni-doped ZnO/MgO BL structure is adapted to make the RS devices using the sputtering - MOCVD hybrid deposition. The Ni doping enhances the compensation of oxygen deficiency in ZnO, resulting in larger HRS values. By controlling the compliance current during the "SET" process, three different reversible RS modes, i.e. threshold switching, volatile switching, and memory switching are obtained. Compared with the memory switching, the volatile switching possesses lower power consumption and better HRS stability. Furthermore, the different compliance currents lead to the different LRS values, which could be used for the multi-level per storage cell applications. The electrical characteristics and microstructure analysis suggest that the compliance current setting affects the formation and rupture of the metallic filaments, leading to the conversion of different switching modes.;The FeZnO switching resistor (R) is vertically integrated with a ZnO diode (D) to form the 1D1R structure, which overcomes the cross-talk in the 1R-based crossbar switching matrix. The 1D1R exhibits high RHRS/R LRS ratio, excellent rectifying characteristics, and robust retention. The new ZnO RS technology presents great impact on the future classes of memory devices for applications such as switching matrix, multi-level storage, and 3D non-volatile memory architecture.
机译:近年来,由于电阻切换(RS)存储设备在下一代非易失性存储器中的潜在应用,引起了越来越多的关注。基于氧化锌(ZnO)的RS器件具有令人鼓舞的功能,例如通过原位掺杂和合金化可很好地控制开关性能,低温制造工艺,优异的辐射硬度和低成本。本研究的目的是研究使用过渡金属(TM)掺杂的ZnO制备RS器件的可行性。掺铁的ZnO(FeZnO)用于制备双极和单极RS。 FeZnO通过MOCVD生长。 Fe是ZnO中的深层供体,Fe掺杂可改善器件的热稳定性,并在高电阻状态(HRS)时提供更大的开关值。对于Ag / FeZnO / Pt双极RS结构,可实现HRS与低电阻态(LRS)的比值为3.8x10 2。主导的传导机制分别归因于HRS处的Poole-Frenkel发射和LRS处的欧姆行为。 FeZnO / MgO双层(BL)用于代替FeZnO单层(SL),以形成Ag / FeZnO / MgO / Pt双极RS结构。该BL器件比SL器件具有更高的RHRS / RLRS比(〜106)。对于Au / FeZnO / MgO / Pt单极RS器件,R HRS / RLRS比在1V时达到2.4x106。为了降低处理温度,采用了Ni掺杂的ZnO / MgO BL结构来制造。使用溅射的RS器件-MOCVD混合沉积。 Ni掺杂增强了ZnO中氧缺乏的补偿,从而导致更大的HRS值。通过在“设置”过程中控制顺从电流,可获得三种不同的可逆RS模式,即阈值切换,易失性切换和存储器切换。与存储器切换相比,易失性切换具有更低的功耗和更好的HRS稳定性。此外,不同的顺从电流会导致不同的LRS值,可将其用于每个存储单元的多级应用。电气特性和微观结构分析表明,顺应性电流设置会影响金属丝的形成和破裂,从而导致不同开关模式的转换.FeZnO开关电阻器(R)与ZnO二极管(D)垂直集成为形成1D1R结构,它克服了基于1R的交叉开关矩阵中的串扰。 1D1R具有高RHRS / R LRS比,出色的整流特性和强大的保留能力。新的ZnO RS技术对诸如开关矩阵,多层存储和3D非易失性存储体系结构等应用的未来存储设备类别产生了巨大影响。

著录项

  • 作者

    Zhang, Yang.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Electrical engineering.;Computer engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号