首页> 外文学位 >Predicting cortical response during transcranial magnetic stimulation in humans.
【24h】

Predicting cortical response during transcranial magnetic stimulation in humans.

机译:预测人类经颅磁刺激期间的皮质反应。

获取原文
获取原文并翻译 | 示例

摘要

Transcranial magnetic stimulation (TMS) is capable of noninvasively activating neurons in the brain. TMS can induce persistent effects and is being increasingly used in both clinical and research applications. Despite this growing interest, the relationship between TMS-generated electric fields (E-fields) and specific cortical electrophysiological responses is not well understood. Most analytical approaches focus on applied magnetic field strength in the target region as the primary factor, placing activation on the gyral crowns. However, imaging studies show cortical targets are typically located in the sulcal banks. To study this causal relationship, we combined subject-specific detailed finite element modeling (FEM) to calculate induced E-field information and employed concurrent TMS-PET data as a measure of cortical response. The research presented in this work is divided into three main parts, each one building on the results of the previous: (1) We determined that neocortical surface orientation was a critical determinant of regional activation by studying the locations of activation during TMS on the cortical surface. Results indicated that brain activations were primarily sulcal for both the TMS and task activations. This study provided further evidence that a major factor in cortical activation during TMS is the orientation of the cortical surface with respect to the induced E-fields. This was demonstrated by the fact that the sulcal bank of the primary motor cortex had larger cerebral blood flow (CBF) responses during TMS despite the gyral crown of the cortex being subjected to a larger magnetic field magnitude. (2) We sought to determine the E-field characteristics that lead to cortical activation. We found that decomposing the E-field into orthogonal vector components based on the cortical surface geometry (and hence, cortical neuron directions) led to significant differences between the regions of cortex that were active and non-active. Specifically, active regions had significantly higher E-field components in the normal orthodromic direction (i.e., parallel to pyramidal neurons in the dendrite-to-axon orientation) and in the tangential direction (i.e., parallel to interneurons) at high spatial gradient. This provides important new understanding of the factors by which TMS induces cortical activation necessary for predictive and repeatable use of this noninvasive stimulation modality (3) Finally, two different but related algorithms were formulated using different optimization approaches that provide a means for predicting topographical maps of cortical activation in humans. This is the first study to produce an algorithm for predicting the electrophysiological responses of neurons in the cortex based on both gross and microscopic brain anatomy correlated to relevant experimental recordings. This new innovation could provide an invaluable tool for predicting regions of cortical activation that may permit, among other benefits, improved prescriptive TMS protocols to optimize therapeutic response to TMS treatment.
机译:经颅磁刺激(TMS)能够无创地激活大脑中的神经元。 TMS可以引起持续的影响,并且越来越多地用于临床和研究应用。尽管人们对此兴趣日益浓厚,但对TMS产生的电场(电场)与特定皮层电生理反应之间的关系尚不十分了解。大多数分析方法都将目标区域中施加的磁场强度作为主要因素,将激活作用放在回旋冠上。但是,影像学研究显示皮质靶标通常位于沟岸。为了研究这种因果关系,我们结合了特定于受试者的详细有限元建模(FEM)以计算诱发的电场信息,并采用并行的TMS-PET数据作为皮层反应的量度。这项工作中提出的研究分为三个主要部分,每个部分都基于先前的研究结果:(1)通过研究皮质上TMS期间的激活位置,我们确定新皮质表面取向是区域激活的关键决定因素。表面。结果表明,大脑激活对于TMS和任务激活都是主要的。这项研究提供了进一步的证据,表明TMS期间皮质激活的主要因素是皮质表面相对于感应电场的方向。尽管在大脑皮层的回旋冠受到更大的磁场强度的作用下,TMS期间主运动皮层的沟银行具有较大的脑血流(CBF)反应,这证明了这一点。 (2)我们试图确定导致皮层激活的电场特征。我们发现,基于皮层表面几何形状(因此,皮层神经元方向)将电场分解为正交向量分量会导致活动区域和非活动区域之间的显着差异。具体而言,在高空间梯度下,活动区域在正常的正畸方向(即与树突到轴突方向平行于锥体神经元)和切线方向(即与中间神经元平行)具有显着较高的电场分量。这提供了对TMS诱导预测和可重复使用这种非侵入性刺激方式所必需的皮质激活的因素的重要的新认识(3)最后,使用不同的优化方法制定了两种不同但相关的算法,这些方法提供了预测地形图的方法。人类的皮质激活。这是第一个产生基于与相关实验记录相关的总体和微观大脑解剖结构预测皮层中神经元电生理响应的算法的研究。这项新的创新可以为预测皮层激活区域提供宝贵的工具,除其他好处外,还可以允许改进的处方TMS方案以优化对TMS治疗的治疗反应。

著录项

  • 作者

    Krieg, Todd.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号