首页> 外文学位 >On the Efficiency of Algorithms for Tensor Decompositions and Their Applications
【24h】

On the Efficiency of Algorithms for Tensor Decompositions and Their Applications

机译:张量分解算法的效率及其应用

获取原文
获取原文并翻译 | 示例

摘要

Multi-dimensional arrays, or tensors, are fundamental objects in computational science for their ability to store multi-dimensional data and to encode bilinear forms. We will consider algorithms and applications of the CP and Tucker tensor decompositions, focusing our efforts on optimizing subroutines required to compute tensor decompositions.;A significant computational bottleneck when computing a CP decomposition is the matricized tensor times Khatri-Rao product (MTTKRP) subroutine. We will prove lower bounds for the communication complexity of MTTKRP, and provide communication-optimal algorithms. In addition, we will consider other tensor computations like partial MTTKRP and multiple tensor times vector (Multi-TTV) computations that are used to compute MTTKRP by performing some of the products in previous steps, the distributing the remaining products over the aggregations of previous partial products. We will also consider variations that compute all MTTKRP computations at once. For Tucker decompositions, a significant bottleneck may occur in the multiple tensor times matrix (Multi-TTM) computation required to generate a core tensor from a set of factor matrices and recover the full tensor from the decomposition. Again we will prove lower bounds on the communication complexity of this computation. Where the bounds are particularly interesting, we will provide communication-optimal algorithms either from existing literature or developed for this work.;Finally, we will search for alternative algorithms for matrix multiplication, so called fast algorithms, that break the assumptions of our communication lower bounds. Specifically, we will compare discrete and continuous search strategies for finding fast matrix multiplication algorithms. These fast algorithms may be used to reduce both the communication and computational complexity of matrix multiplication which underlies many tensor computations including Multi-TTM. Ultimately, due to the ability of CP-decompositions to encode bilinear forms, this search is in fact a search for an exact CP-decomposition of the tensor that encodes matrix multiplication of a given dimension.
机译:多维数组或张量是计算科学中的基本对象,因为它们具有存储多维数据和编码双线性形式的能力。我们将考虑CP和Tucker张量分解的算法和应用,将精力集中在优化计算张量分解所需的子例程上;;计算CP分解时的一个重要计算瓶颈是矩阵张量乘以Khatri-Rao乘积(MTTKRP)子例程。我们将证明MTTKRP通信复杂性的下限,并提供通信最佳算法。此外,我们将考虑其他张量计算,例如部分MTTKRP和多张量时间矢量(Multi-TTV)计算,这些方法用于通过执行先前步骤中的某些乘积来计算MTTKRP,将剩余乘积分布在先前部分的聚合中产品。我们还将考虑可同时计算所有MTTKRP计算的变量。对于Tucker分解,要从一组因子矩阵生成核心张量并从分解中恢复整个张量所需的多个张量时间矩阵(Multi-TTM)计算中可能会出现明显的瓶颈。同样,我们将证明此计算的通信复杂性的下限。在边界特别有趣的地方,我们将提供现有文献中或针对此工作而开发的通信最优算法。最后,我们将寻找矩阵乘法的替代算法,即所谓的快速算法,该算法可以降低通信的假设。界限。具体来说,我们将比较离散和连续搜索策略,以查找快速矩阵乘法算法。这些快速算法可用于减少矩阵乘法的通信和计算复杂度,这是许多张量计算(包括Multi-TTM)的基础。最终,由于CP分解具有编码双线性形式的能力,因此该搜索实际上是对张量的精确CP分解的搜索,该张量编码给定维数的矩阵乘法。

著录项

  • 作者

    Rouse, Kathryn.;

  • 作者单位

    Wake Forest University.;

  • 授予单位 Wake Forest University.;
  • 学科 Computer science.;Mathematics.
  • 学位 M.S.
  • 年度 2018
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号