首页> 外文学位 >Assessing antimalarial cidality in Plasmodium falciparum parasites.
【24h】

Assessing antimalarial cidality in Plasmodium falciparum parasites.

机译:评估恶性疟原虫寄生虫的抗疟疾患病率。

获取原文
获取原文并翻译 | 示例

摘要

The rise of resistance to commonly used antimalarial medications, such as chloroquine, has exacerbated a global health burden. Years of study of chloroquine resistance has focused on low concentrations of drug that result in an inhibition of parasite growth, known as cytostatic activity. In a clinical setting, the concentration of chloroquine peaks at much higher concentrations and kills parasites. Defined as "cytocidal" activity, the ability of higher concentrations of antimalarials to kill parasites has only recently been explored. Comparing in vitro chemical models of hemozoin inhibition (the predicted mechanism of action of drugs like chloroquine) to the in vivo activities supports that there is a different target at cytocidal concentrations. To probe these possible targets, a novel activity-based protein profiling probe was synthesized, relying on copper-catalyzed azide-alkyne cycloaddition to conjugate a photoaffinity probe of chloroquine to biotin, for mass-spectroscopy proteomics, and fluorophores, for subcellular-localization by fluorescence microscopy.;The rise of resistance to commonly used antimalarial medications, such as chloroquine, has exacerbated a global health burden. Years of study of chloroquine resistance has focused on low concentrations of drug that result in an inhibition of parasite growth, known as cytostatic activity. In a clinical setting, the concentration of chloroquine peaks at much higher concentrations and kills parasites. Defined as "cytocidal" activity, the ability of higher concentrations of antimalarials to kill parasites has only recently been explored. Comparing in vitro chemical models of hemozoin inhibition (the predicted mechanism of action of drugs like chloroquine) to the in vivo activities supports that there is a different target at cytocidal concentrations. To probe these possible targets, a novel activity-based protein profiling probe was synthesized, relying on copper-catalyzed azide-alkyne cycloaddition to conjugate a photoaffinity probe of chloroquine to biotin, for mass-spectroscopy proteomics, and fluorophores, for subcellular-localization by fluorescence microscopy. In addition to understanding the cellular effects of cytocidal drug activity, the concept of cytocidality is integrated into the search for new combination therapies. High throughput screening of combinations of known antimalarials and compounds currently under clinical review identified a series of compounds that showed possible synergistic activities with known antimalarials. One class of these compounds was found to be phosphitidylinositol 3-phosphate kinase (PI3K) inhibitors, known to bind to human PI3K and effect its action in autophagy and other signaling pathways. Autophagy has only recently been explored in Plasmodium falciparum,, and has been implicated in the cytocidal activity of chloroquine. Therefore, these PI3K inhibitors were paired with each of the drugs of the currently used therapy Coartem (artemether and lumefantrine), and their interaction was defined as synergistic, additive, or antagonistic under both the cytostatic and cytocidal conditions. Cytocidal, but not cystatic, synergy was observed when another PI3K inhibitor, GSK2126458, was paired with either artemether or lumefantrine in both chloroquine sensitive and chloroquine resistant strains. Understanding how drug activities change under cytostatic vs. cytocidal conditions will facilitate a better understanding of resistance and the identification of novel therapies.
机译:对常用的抗疟疾药物(例如氯喹)的耐药性上升加剧了全球健康负担。多年来对氯喹抗药性的研究集中在低浓度的药物上,这种药物会抑制寄生虫的生长,即抑制细胞生长的活性。在临床环境中,氯喹的浓度在更高浓度时达到峰值,并杀死了寄生虫。定义为“杀细胞”活性的高浓度抗疟药杀死寄生虫的能力直到最近才被发现。将血腥素抑制作用的体外化学模型(预测的药物如氯喹的作用机理)与体内活性进行比较,可以证明在杀细胞浓度下存在不同的靶标。为了探测这些可能的靶标,合成了一种新型的基于活性的蛋白质谱探针,它依赖于铜催化的叠氮化物-炔烃环加成反应将氯喹的光亲和探针与生物素缀合,用于质谱蛋白质组学和荧光团,用于通过亚细胞定位荧光显微镜;对常用抗疟疾药物(例如氯喹)的耐药性上升加剧了全球健康负担。多年来对氯喹抗药性的研究集中在低浓度的药物上,这种药物会抑制寄生虫的生长,即抑制细胞生长的活性。在临床环境中,氯喹的浓度在更高浓度时达到峰值,并杀死了寄生虫。定义为“杀细胞”活性的高浓度抗疟药杀死寄生虫的能力直到最近才被发现。将血腥素抑制作用的体外化学模型(预测的药物如氯喹的作用机理)与体内活性进行比较,可以证明在杀细胞浓度下存在不同的靶标。为了探测这些可能的靶标,合成了一种新型的基于活性的蛋白质谱探针,它依赖于铜催化的叠氮化物-炔烃环加成反应将氯喹的光亲和探针与生物素偶联,用于质谱蛋白质组学和荧光团,用于通过亚细胞定位荧光显微镜。除了了解杀细胞药物活性的细胞作用外,细胞杀伤性的概念已被整合到寻找新的联合疗法中。高通量筛选已知抗疟疾药物和当前正在临床审查的化合物的组合,鉴定出一系列化合物,这些化合物显示了与已知抗疟疾药物可能的协同活性。已发现这些化合物中的一类是磷酸肌醇三磷酸激酶(PI3K)抑制剂,已知与人PI3K结合并影响其在自噬和其他信号通路中的作用。自噬只是最近在恶性疟原虫中进行了探索,并且与氯喹的杀细胞活性有关。因此,这些PI3K抑制剂与当前使用的复方蒿甲醚(蒿甲醚和lumefantrine)的每种药物配对,并且在细胞抑制和杀细胞条件下,它们的相互作用被定义为协同,加成或拮抗作用。在氯喹敏感和耐氯喹菌株中,另一种PI3K抑制剂GSK2126458与蒿甲醚或lumefantrine配对时,观察到了杀细胞作用,但没有促循环作用。了解在细胞生长抑制和杀细胞条件下药物活性如何变化将有助于更好地理解耐药性并鉴定新疗法。

著录项

  • 作者

    Sherlach, Katy S.;

  • 作者单位

    Georgetown University.;

  • 授予单位 Georgetown University.;
  • 学科 Chemistry Biochemistry.;Health Sciences Public Health.;Health Sciences Pharmacology.;Biology Cell.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 293 p.
  • 总页数 293
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号