首页> 外文学位 >Modeling and Evaluation of Cyber-Physical Threats in Emerging Interdependent Networks
【24h】

Modeling and Evaluation of Cyber-Physical Threats in Emerging Interdependent Networks

机译:新兴相互依存网络中网络物理威胁的建模和评估

获取原文
获取原文并翻译 | 示例

摘要

The proliferation of computer networking technologies have enabled many emerging paradigms such as mobile social networking (MSN), smart grid, and Internet-of-things (IoT). In these paradigms, the computer networks not only support, but also tightly interact with other cyber (i.e., social networks) and/or physical (i.e., power and infrastructure networks) entities, forming an interdependent cyber and physical networks. Unfortunately, the interdependence relation in cyber-physical networks poses a major challenge in analyzing the networks' performance. Moreover, various man-made and natural threats may induce faults, which due to the interdependence can spread to a larger part of the cyber-physical networks, causing a so-called cascade-of-failures. Since billions of people will depend on cyber-physical networks, performance degradation-especially under threat-induced cascade-of-failures|will have a profound impact and remains as an open yet interesting problem.;In this dissertation, we aim to understand the performance of cyber-physical networks and its robustness against man-made and natural faults. Because it is not practical to provide a unified framework for all types of cyber-physical networks, which have their own features and objectives, we adopt a systematic, step-by-step approach to model and evaluate the networks' performance and robustness. Specifically, we focus on four emerging paradigms: D2D-based IoT, IoT-applied dynamic spectrum access (DSA) network, D2D-based MSN, and smart grid.;In particular, we first consider the intra-network interdependence in the communication network by studying the delay of reaching a point-of-access in D2D-based IoT applications. We propose a packet mobility model to capture the progress of data packets toward the point-ofaccess, which is used to derive the upper and lower bounds of access delay. Then, we propose a packet shedding scheme that reduces the total transmit power while guaranteeing that packets can be delivered within a pre-determined access delay. Second, we study how to quickly establish a common control channel between a pair of DSA nodes with limited channel hopping capability. We introduce graph-based channel hopping schemes with quick rendezvous and show that the proposed schemes achieve satisfactory rendezvous rate under an indoor mobile environment. In addition, we consider the inter-network interdependence between the cyber and physical networks by analyzing the impact of initial node dropouts to the network-wide and end-users' resilience of D2D-based MSNs. Finally, we characterize the spatial and temporal impacts of edge disconnections in generic cyber-physical networks. The works in this dissertation not only expand our knowledge on the performance of cyber-physical networks, but also provide instrumental guidelines to the design of robust interdependent networks.
机译:计算机网络技术的激增已经实现了许多新兴的范例,例如移动社交网络(MSN),智能电网和物联网(IoT)。在这些范例中,计算机网络不仅支持而且还与其他网络(即社交网络)和/或物理(即电力和基础设施网络)实体紧密交互,从而形成相互依赖的网络和物理网络。不幸的是,网络物理网络中的相互依赖关系在分析网络性能方面提出了重大挑战。此外,各种人为的和自然的威胁都可能引起故障,由于相互依赖性,这些故障可能会传播到网络物理网络的较大部分,从而导致所谓的故障级联。由于数十亿人将依赖于网络物理网络,因此性能下降(尤其是在威胁导致的故障级联中)将产生深远的影响,并且仍然是一个开放而有趣的问题。网络物理网络的性能及其对人为和自然故障的鲁棒性。由于为具有自己的特点和目标的所有类型的物理网络提供统一的框架是不切实际的,因此我们采用系统的逐步方法来对网络的性能和健壮性进行建模和评估。具体而言,我们专注于四个新兴范例:基于D2D的IoT,基于IoT的动态频谱访问(DSA)网络,基于D2D的MSN和智能电网;特别是,我们首先考虑通信网络中的网络内部相互依赖性。通过研究基于D2D的IoT应用程序中到达访问点的延迟。我们提出了一种数据包移动性模型来捕获数据包向访问点的进度,该模型可用于得出访问延迟的上限和下限。然后,我们提出了一种数据包脱落方案,该方案可以降低总发射功率,同时保证可以在预定的访问延迟内传送数据包。其次,我们研究如何在通道跳跃能力有限的一对DSA节点之间快速建立公共控制通道。我们引入了具有快速集合点的基于图的信道跳变方案,并表明所提出的方案在室内移动环境下达到了令人满意的集合率。此外,我们通过分析初始节点丢失对整个网络以及最终用户基于D2D的MSN的弹性的影响,来考虑网络与物理网络之间的网络相互依赖性。最后,我们描述了通用物理网络中边缘断开的时空影响。本文的工作不仅扩展了我们对物理网络性能的认识,而且为鲁棒的相互依赖网络的设计提供了工具性的指导。

著录项

  • 作者

    Pambudi, Sigit Aryo.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Computer engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号