首页> 外文学位 >Determining the origin and possible mechanisms of QPOS in x-ray emissions of neutron stars and black holes.
【24h】

Determining the origin and possible mechanisms of QPOS in x-ray emissions of neutron stars and black holes.

机译:确定中子星和黑洞的X射线发射中QPOS的起源和可能的机制。

获取原文
获取原文并翻译 | 示例

摘要

QPOs (Quasi-Periodic Oscillations) are time oscillations that appear in the light curve of observational data in x-ray bands. They are of mysterious origin although they are believed to be a result of the intense gravity around neutron stars and black holes and emit x-rays from accretion disks. I investigate a derived ratio between two periods has been found in the QPO data. The two periods, which appear as peaks in the power density spectrum have been found to be in a 3:2 ratio and can possibly distinguish theoretical models. In the work presented here, two physical approaches are developed that can explain the integer resonance ratio. One is a cusp layer model, which is based on a boundary layer model that uses the physical conditions at opposite sides of said layer to explore the magnitude of the vertical versus radial epicyclic frequencies and confirm the anticipated scales of the observed frequencies. It also happens to recreate a 3:2 resonance ratio for the Keplerian angular frequencies at the ISCO, taken as the preferred radius for the boundary layer model.;A toy model was recreated and utilized to emulate the Alfven radius due to the accretion disk's innate magnetic field and explore how it serves as a disruption radius and impacts the accretion of mass and the effective inner edge of the disk. The simulations show that there is no significance deviation from the ISCO as an effective inner edge for the accretion disk due to the magnetospheric influence of the disk alone.;I also invoke a parameter to handle the coupling between the vertical and radial epicyclical frequencies and relate it to the pressure within the disk. I show the coupling is strongest at the equatorial plane where pressure is at its maximum value.;A model I utilize is a relativistic resonance model, combined with a helioseismological approach to explore the pulsation of the inner edge of the accretion disk that imparts the resonance of the accreting matter moving along the Kerr space-time orbits. The helioseismological model gives a characteristic frequency for small perturbations in the stellar matter within the atmosphere of a star. The diskoseismological model extends that principle to material within an accretion disk. I take it to the same extent that the QPO frequencies are due to small perturbations along the marginally stable circular orbit, in the vertical and radial directions and use it as a probe into the inner disk and what information it yields. The inner disk edge, per the model, is treated as a vibrating surface that yields the radial and vertical epicyclic frequencies as characteristic features of the vibration. The epicyclical frequencies found using the physical parameters of the model within the cusp layer inside the disk could explain the physical context of the phenomenon responsible for the creation of the QPOs. An approach within the diskoseismological model uses the cylindrical reference frame of a disk in terms of the distribution of mass in combination with the strong gravity of the central object and the Keplerian velocity and sonic speed to yield a natural resonance ratio of 3/2 as well.;The model can be used as a diagnostic tool to explore the physical phenomena of the material orbits and the disk itself. Most importantly, the model can be used to determine and constrain the ratio of spin to mass of the compact object itself. It yields new information as previously undetermined by any earlier model; the adiabatic index at a specific radius within the accretion disk, which serves to lend insight into the innate phenomena of accretion disks at large. It establishes what were previously unknown information, such as the mass density distribution at a specific radius and outward, the radius of influence in terms of the sonic radius, the accretion rate, and the temperature distribution at the same radius for the accretion disk, as all are dependent on the adiabatic index. In all previous literature, the adiabatic index is taken as an assumptive estimate, and the models build on that assumed value of the adiabatic index. This model allows us to obtain an actual value of the adiabatic index at the ISCO and use it as an establishing feature to refine models on for more physically realistic observations.
机译:QPO(准周期性振荡)是出现在X射线波段观测数据的光曲线中的时间振荡。尽管它们被认为是中子星和黑洞周围强烈引力的结果,并从吸积盘发出X射线,但它们的起源却是神秘的。我调查了QPO数据中发现的两个周期之间的比率。发现在功率密度频谱中以峰值出现的两个周期的比率为3:2,可以区分理论模型。在本文介绍的工作中,开发了两种可以解释整数共振比的物理方法。一种是尖顶层模型,其是基于边界层模型的,该边界层模型使用所述层的相对侧的物理条件来探索垂直频率与径向周转频率的幅值,并确认观察到的频率的预期尺度。它也恰好为ISCO处的Keplerian角频率重新创建了3:2的共振比,作为边界层模型的首选半径。;由于积聚盘的固有特性,重新创建了一个玩具模型并用来模拟Alfven半径磁场,并探索它如何充当破坏半径并影响质量的增加和磁盘的有效内边缘。仿真表明,仅由于磁层受磁层的影响,与ISCO作为吸积盘的有效内边缘没有显着偏差。我还调用一个参数来处理垂直和径向周转频率之间的耦合,并且它到磁盘内的压力。我展示了在最大压力时在赤道平面上的耦合最强。;我使用的模型是相对论共振模型,结合流变学方法来探索赋予共振的吸积盘内边缘的脉动沿克尔时空轨道运动的吸积物质地震学模型给出了恒星大气中恒星物质中微小扰动的特征频率。磁盘地震模型将该原理扩展到吸积盘中的物质。我认为QPO频率是由于沿边际稳定的圆形轨道在垂直和径向方向上的微小扰动而引起的,因此将其用作探查内盘及其产生的信息的探针。根据模型,磁盘的内边缘被视为振动表面,该表面产生径向和垂直周转频率作为振动的特征。使用磁盘内部尖点层中的模型的物理参数发现的周转频率可以解释造成QPO产生的现象的物理环境。磁盘地震学模型中的一种方法使用磁盘的圆柱参考系进行质量分布,结合中心物体的强重力以及开普勒速度和声速,产生自然共振比也为3/2该模型可以用作诊断工具,以探索物质轨道和磁盘本身的物理现象。最重要的是,该模型可用于确定和约束紧密物体自身的自旋质量比。它会产生新的信息,而以前的任何模型都无法确定。吸积盘内特定半径处的绝热指数,有助于深入了解吸积盘的先天现象。它建立了以前未知的信息,例如特定半径和向外的质量密度分布,音速半径,吸积率以及吸积盘在相同半径处的温度分布等影响半径。所有这些都取决于绝热指数。在所有以前的文献中,绝热指数均作为假设估计,并且模型基于该绝热指数的假定值建立。该模型使我们能够在ISCO处获取绝热指数的实际值,并将其用作建立模型的基础,以完善模型以实现更实际的物理观测。

著录项

  • 作者

    Thomson, Brent Wayne.;

  • 作者单位

    The University of North Dakota.;

  • 授予单位 The University of North Dakota.;
  • 学科 Physics Astrophysics.;Physics Theory.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 293 p.
  • 总页数 293
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号