首页> 外文学位 >Tunable Surface Hydrophobicity and Fluid Transport through Nanoporous Membranes.
【24h】

Tunable Surface Hydrophobicity and Fluid Transport through Nanoporous Membranes.

机译:可调节的表面疏水性和通过纳米孔膜的流体传输。

获取原文
获取原文并翻译 | 示例

摘要

There are more than three billion people across the globe that struggle to obtain clean drinkable water. One of the most promising avenues for generating potable water is through reverse osmosis and nanofiltration. Both solutions require a semipermeable membrane that prohibits passage of unwanted solute particles but allows passage of the solvent. Atomically thin two-dimensional membranes based on porous graphene show great promise as semipermeable materials, but modeling fluid flow on length scales between the microscopic (nanometer and smaller) and macroscopic (micron and larger) regimes presents formidable challenges. This thesis explores both equilibrium and nonequilibrium aspects of this problem and develops new methodology for simulating systems away from thermal equilibrium.;First, we hypothesize that there is a wetting penalty for water as it tries to breach a sheet of graphene that should be naturally hydrophobic. By using equilibrium molecular dynamics simulations, we show that the hydrophobicity depends sensitively on the degree of electrical doping, offering an opportunity to tune the hydrophobic effect of graphene using small amounts of doping. The wetting contact angle, a measure of hydrophobicity, changes dramatically with the voltage applied to single layer graphene. We find that the sensitivity of the hydrophobic effect to voltage depends not on hydrogen bonding motifs at the interface between graphene and water, but instead on a phenomenon known as electrowetting. The theory of electrowetting predicts that the difference in surface tensions that defines the contact angle is quartic in the voltage, rather than quadratic, as it would be in bilayer graphene or in a two-dimensional metal.;To explore the nonequilibrium aspects of fluid passage through atomically thin membranes, we developed a molecular dynamics methodology for simulating fluid flow at constant flux based on Gauss's principle of least constraint. This method develops microscopic equations of motion that satisfy specified constraints on the kinetic temperature and total mass flux. As a proof of principle, we simulate the flow of a simple monoatomic fluid and observe emergent and collective behaviors consistent with both known hydrodynamic solutions and expectations for velocity distributions from statistical mechanics. We compare results from the Gauss method simulations with that of a method commonly used in the literature. By computing the relationship between the pressure drop across a pipe-like region and the fluid current through it, we find that these two methods agree quantitatively with one another and comment on the advantages and disadvantages for both methods.
机译:全球有超过30亿人在努力获取清洁的饮用水。产生饮用水的最有希望的途径之一是通过反渗透和纳米过滤。两种溶液都需要半透膜,该膜可阻止不需要的溶质颗粒通过,但允许溶剂通过。基于多孔石墨烯的原子薄的二维膜显示出作为半渗透性材料的巨大希望,但是要在微观(纳米和较小)和宏观(微米和较大)范围之间的长度尺度上模拟流体流动提出了巨大的挑战。本文探讨了该问题的平衡和非平衡方面,并开发了新的方法来模拟远离热平衡的系统。首先,我们假设水在试图破坏应该是天然疏水性的石墨烯时会受到水的润湿作用。 。通过使用平衡分子动力学模拟,我们表明疏水性敏感地取决于电掺杂的程度,从而提供了使用少量掺杂来调节石墨烯的疏水作用的机会。润湿接触角(一种疏水性的量度)随施加到单层石墨烯上的电压而急剧变化。我们发现疏水效应对电压的敏感性不取决于石墨烯与水之间界面的氢键基序,而是取决于被称为电润湿的现象。电润湿理论预测,定义接触角的表面张力差异在电压中是四次的,而不是在双层石墨烯或二维金属中是二次方的;探讨流体通道的非平衡方面通过原子薄膜,我们基于高斯最小约束原理开发了一种分子动力学方法,以恒定流量模拟流体流动。该方法建立了满足特定的动力学温度和总质量通量约束条件的微观运动方程。作为原理上的证明,我们模拟简单的单原子流体的流动,并观察与已知流体力学解决方案和统计力学对速度分布的期望一致的涌现和集体行为。我们将高斯方法模拟的结果与文献中常用的方法进行比较。通过计算跨过一个管状区域的压降与流过该区域的流体之间的关系,我们发现这两种方法在数量上彼此吻合,并评论了这两种方法的优缺点。

著录项

  • 作者

    Ostrowski, Joseph H.J.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Chemistry Physical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号