首页> 外文学位 >Optimizing mechanical stiffness of shape memory and superelastic alloys by introducing engineering porosity.
【24h】

Optimizing mechanical stiffness of shape memory and superelastic alloys by introducing engineering porosity.

机译:通过引入工程孔隙率来优化形状记忆和超弹性合金的机械刚度。

获取原文
获取原文并翻译 | 示例

摘要

Common metals for stable long-term implants (e.g. stainless steel, Titanium, and Titanium alloys) are much stier than spongy cancellous and even stier than cortical bone. When bone and implant are loaded this stiness mismatch results in stress shielding and as a consequence, degradation of surrounding bony structure can lead to disassociation of the implant. Due to its lower stiness and high reversible deformability, which is associated with the superelastic behavior, NiTi is an attractive biomaterial for load bearing implants. However, the stiness of austenitic Nitinol is closer to that of bone but still too high. Additive manufacturing provides, in addition to the fabrication of patient specic implants, the ability to solve the stiness mismatch by adding engineered porosity to the implant. This in turn allows for the design of dierent stiness proles in one implant tailored to the physiological load conditions. This work covers a fundamental approach to bring this vision to reality. At the rst step a stiness optimization scheme is presented. Based on the ndings from this algorithm a second optimization method is developed to change the parameters of predened porosities to optimize the stiness. The suggested porous structures are then manufactured out of Titanium and Nitinol by selective laser melting. The manufactured parts tested under compression to nd the modulus of elasticity and the results compared to the results of simulation.;Simulation and experiment results show that the mechanical properties of the devices can be changed signicantly after introducing porosity. The results of this work paves the way for designing stiness tailored bone implants.
机译:用于长期稳定植入的常见金属(例如,不锈钢,钛和钛合金)比海绵状松质材料要坚硬得多,甚至比皮质骨还要坚硬。当骨头和植入物被加载时,这种稳定性失配会导致应力屏蔽,结果,周围骨结构的退化会导致植入物解体。由于其较低的稳定性和与超弹性行为相关的高可逆变形性,NiTi是一种有吸引力的生物材料,可用于承重植入物。但是,奥氏体镍钛诺的稳定性更接近骨骼,但仍然太高。除了制造患者专用植入物之外,增材制造还提供了通过向植入物添加工程孔隙率来解决稳定性失配的能力。这继而允许在针对生理负荷条件定制的一种植入物中设计不同的稳定性轮廓。这项工作涵盖了将这一愿景变为现实的基本方法。在第一步,提出了稳定性优化方案。基于该算法的发现,开发了第二种优化方法,以更改预压孔隙率的参数以优化稳定性。然后,通过选择性激光熔化,由钛和镍钛诺制造出建议的多孔结构。所制造的零件在压缩条件下进行了测试,发现其弹性模量,并将结果与​​模拟结果进行了比较。仿真和实验结果表明,引入孔隙率后,器件的机械性能会发生显着变化。这项工作的结果为设计风格定制的骨植入物铺平了道路。

著录项

  • 作者

    Rahmanian, Rasool.;

  • 作者单位

    The University of Toledo.;

  • 授予单位 The University of Toledo.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2014
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号