首页> 外文学位 >Computational Transonic Flutter Solutions for Cranked Wings by the Direct Eulerian-Lagrangian Method.
【24h】

Computational Transonic Flutter Solutions for Cranked Wings by the Direct Eulerian-Lagrangian Method.

机译:直接欧拉-拉格朗日方法的曲柄翼的计算跨音速颤振解决方案。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, a three-dimensional computational aeroelastic simulation for cranked, highly-swept wings is developed, and solutions are presented for several wing models. The computational model is a fully nonlinear coupled fluid-structure simulation based on the Direct Eulerian-Lagrangian coupling methodology. The wing is modeled using nonlinear modified von Karman plate finite elements. Large deformation is accounted for through the use of element-attached local coordinate systems referenced to a single global coordinate system. The fluid is modeled using the mixed Eulerian-Lagrangian formulation of the classical Euler equations and is discretized using a Galerkin finite element approach on an unstructured tetrahedral mesh. The fluid and structural models are coupled by the Direct Eulerian-Lagrangian method where the finite-element shape functions and the local element coordinate systems are used to describe the fluid-structure boundary without approximation. Time synchronization and spatial accuracy are maintained to ensure accurate exchange of energy between the fluid and the structure.;The computational solutions exhibit multiple types of aeroelastic response including transonic limit cycle flutter at a wide range of dynamic pressures, subsonic and supersonic bending-torsion flutter at higher dynamic pressures and a wide range of Mach numbers, and limit cycle oscillation dependent on both Mach number and angle of attack. Shock motion dependent on wing deformation is shown to play a major role in determining the response of the wings, and, depending on the flow conditions, can either stabilize or destabilize the response. Results from the simulations correlate closely with observed wind tunnel test responses.
机译:本文针对曲柄高掠过的机翼进行了三维计算气动弹性仿真,并提出了几种机翼模型的解决方案。该计算模型是基于直接欧拉-拉格朗日耦合方法的完全非线性耦合的流固耦合模拟。机翼是使用非线性修改的von Karman板有限元建模的。大变形是通过使用参考单个全局坐标系的元素附加局部坐标系来解决的。使用经典Euler方程的混合Eulerian-Lagrangian公式对流体进行建模,并使用Galerkin有限元方法对非结构化四面体网格进行离散化。流体和结构模型通过直接欧拉-拉格朗日方法耦合,其中有限元形状函数和局部元素坐标系用于描述流体结构边界而无需近似。保持时间同步和空间精度,以确保流体与结构之间的能量准确交换。计算解决方案表现出多种类型的气动弹性响应,包括跨音速极限循环颤振(在宽动态压力范围内),亚音速和超音速弯曲-扭转颤振在较高的动态压力和较大的马赫数范围内,并且根据马赫数和攻角来限制循环振荡。示出了取决于机翼变形的冲击运动在确定机翼的响应中起主要作用,并且取决于流动条件,可以使响应稳定或不稳定。模拟的结果与观察到的风洞测试响应密切相关。

著录项

  • 作者

    Mellquist, Erik Charles.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 280 p.
  • 总页数 280
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号