首页> 外文学位 >Deciphering Biomass Fragmentation Using Millisecond Micro-reactor Kinetics
【24h】

Deciphering Biomass Fragmentation Using Millisecond Micro-reactor Kinetics

机译:使用毫秒级微反应器动力学破译生物质碎片

获取原文
获取原文并翻译 | 示例

摘要

Pyrolytic conversion of lignocellulosic biomass utilizes high temperatures to thermally fragment biopolymers to volatile organic compounds. The complexity of the degradation process includes thousands of reactions through multiple phases occurring in less than a second. The underlying chemistry of lignocellulose decomposition has been studied for decades, and numerous conflicting mechanisms and kinetic models have been proposed. The fundamental science of biomass pyrolysis is still without detailed chemical kinetics and reaction models capable of describing the chemistry and transport in industrial reactors. The primary goal of this thesis was to develop mechanistic insights of biomass pyrolysis with the focus on fragmentation of cellulose using two novel microreactor systems, a. Quantitative Carbon Detector (QCD) b. Pulse Heated Analysis of Solid Reactions (PHASR).;Current research of complex chemical systems, including biomass pyrolysis, requires analysis of large analyte mixtures (>100 compounds). Quantification of each carbon-containing analyte by existing methods (flame ionization detection) requires extensive identification and calibration. An integrated microreactor system called the Quantitative Carbon Detector (QCD) for use with current gas chromatography techniques for calibration-free quantitation of analyte mixtures was designed. Combined heating, catalytic combustion, methanation and gas co-reactant mixing within a single modular reactor fully converts all analytes to methane (>99.9%) within a thermodynamic operable regime. Residence time distribution of the QCD reveals negligible loss in chromatographic resolution consistent with fine separation of complex mixtures including pyrolysis products.;The requirements are established for measuring the reaction kinetics of high temperature (>400 °C) biomass pyrolysis in the absence of heat and mass transfer limitations. Experimental techniques must heat and cool biomass samples sufficiently fast to elucidate the evolution of reaction products with time while also eliminating substantial reaction during the heating and cooling phases, preferably by measuring the temperature of the reacting biomass sample directly. These requirements were described with the PHASR (Pulsed-Heated Analysis of Solid Reactions) technique and demonstrated by measuring the time-resolved evolution of six major chemical products from Loblolly pine pyrolysis over a temperature range of 400 °C to 500 °C. Differential kinetics of loblolly pine pyrolysis were measured to determine the apparent activation energy for the formation of six major product compounds including levoglucosan, furfural and 2-methoxyphenol.;Levoglucosan (LGA), a six-carbon oxygenate, is the most abundant primary product from cellulose pyrolysis with LGA yields reported over a wide range of 5--80 percent carbon (%C). In this study, the variation of the observed yield of LGA from cellulose pyrolysis was experimentally investigated. Cellulose pyrolysis experiments were conducted in two different reactors: the Frontier micropyrolyzer (2020-iS), and the pulse heated analysis of solid reactions (PHASR) system. The reactor configuration and experimental conditions including cellulose sample size were found to have a significant effect on the yield of LGA. Four different hypotheses were proposed and tested to evaluate the relationship of cellulose sample size and the observed LGA yield including (a) thermal promotion of LGA formation, (b) the crystallinity of cellulose samples, (c) secondary and vapor-phase reactions of LGA, and (d) the catalytic effect of melt-phase hydroxyl groups. Co-pyrolysis experiments of cellulose and fructose in the PHASR reactor presented indirect experimental evidence of previously postulated catalytic effects of hydroxyl groups in glycosidic bond cleavage for LGA formation in transport-limited reactor systems.;PHASR experiments were performed to measure apparent kinetic parameters of cellulose fragmentation. The LGA formation step was decoupled from the initiation reactions by identifying cellobiosan as a chemical surrogate for cellulose pyrolysis intermediate melt phase. Kinetics of LGA formation step was measured using 13C1 cellobiosan samples to track the contribution of glucose monomer in cellobiosan. The activation energy Ea calculated from the slope of the Arrhenius plot was 26.9 +/- 1.9 kcal/mol and the preexponential factor k0 calculated from the intercept was 4.2 x 107 sec -1. These kinetic parameters were found to be lower than the corresponding values for the previously proposed mechanisms of LGA formation calculated from DFT studies indicating a possibility of new, catalyzed mechanism of LGA formation.
机译:木质纤维素生物质的热解转化利用高温将生物聚合物热裂解为挥发性有机化合物。降解过程的复杂性包括在不到一秒钟的时间内发生多个阶段的数千个反应。木质纤维素分解的基础化学已经研究了数十年,并且已经提出了许多相互矛盾的机理和动力学模型。生物质热解的基础科学仍然缺乏能够描述工业反应器中化学和运输的详细化学动力学和反应模型。本论文的主要目的是利用两种新型微反应器系统开发生物质热解的机理见解,重点是纤维素的裂解。定量碳检测器(QCD)b。固体反应的脉冲加热分析(PHASR)。当前对复杂化学系统(包括生物质热解)的研究需要分析大型分析物混合物(> 100种化合物)。通过现有方法(火焰电离检测)对每种含碳分析物进行定量分析需要广泛的鉴定和校准。设计了一种集成的微反应器系统,称为定量碳检测器(QCD),该系统与当前的气相色谱技术一起用于对分析物混合物进行无标定定量。在一个模块化反应器中,将加热,催化燃烧,甲烷化和气体共反应物混合在一起,可以在热力学可操作范围内将所有分析物完全转化为甲烷(> 99.9%)。 QCD的停留时间分布表明,与包括热解产物在内的复杂混合物的精细分离相一致,色谱分离度的损失可忽略不计;建立了在不加热和不加热的情况下测量高温(> 400°C)生物质热解反应动力学的要求传质限制。实验技术必须足够快地加热和冷却生物质样品,以阐明反应产物随时间的演变,同时还应消除加热和冷却阶段的实质性反应,最好通过直接测量反应的生物质样品的温度来进行。这些要求通过PHASR(固相反应的脉冲加热分析)技术进行了描述,并通过测量在400°C至500°C的温度下从火炬松热解的六种主要化学产品的时间分辨演化来证明。测量了火炬松热解的动力学,以确定形成六种主要产物化合物(包括左旋葡聚糖,糠醛和2-甲氧基苯酚)的表观活化能。左旋葡聚糖(LGA)是六碳氧化物,是最丰富的初级产物据报道,具有LGA产率的纤维素热解的碳含量范围为5--80%(%C)。在这项研究中,实验研究了纤维素热解法观察到的LGA收率的变化。在两个不同的反应器中进行了纤维素热解实验:Frontier微型热解器(2020-iS)和固体反应的脉冲加热分析(PHASR)系统。发现反应器配置和包括纤维素样品大小的实验条件对LGA的产率具有显着影响。提出并测试了四个不同的假设,以评估纤维素样品尺寸与观察到的LGA产量之间的关系,包括(a)LGA形成的热促进,(b)纤维素样品的结晶度,(c)LGA的二次和气相反应(d)熔融相羟基的催化作用。在PHASR反应器中进行纤维素和果糖的共热解实验,间接证明了先前假设的羟基在糖苷键裂解中对限制运输的反应器系统中LGA形成的催化作用.PHASR实验用于测量纤维素的表观动力学参数碎片化。 LGA形成步骤通过确定纤维二糖醇是纤维素热解中间熔融相的化学替代物而与引发反应脱钩。 LGA形成步骤的动力学是使用13C1纤维二糖酶样品测量的,以追踪葡萄糖单体在纤维二糖酶中的作用。根据阿累尼乌斯曲线的斜率计算出的活化能Ea为26.9 +/- 1.9 kcal / mol,根据截距计算出的指数前因子k0为4.2 x 107 sec -1。发现这些动力学参数低于根据DFT研究计算的先前提出的LGA形成机理的相应值,表明可能存在新的,催化的LGA形成机理。

著录项

  • 作者

    Maduskar, Saurabh.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号