首页> 外文学位 >Finding the chemistry in biomass pyrolysis: Millisecond chemical kinetics and visualization
【24h】

Finding the chemistry in biomass pyrolysis: Millisecond chemical kinetics and visualization

机译:在生物质热解中查找化学:毫秒级化学动力学和可视化

获取原文
获取原文并翻译 | 示例

摘要

Biomass pyrolysis is a promising thermochemical method for producing fuels and chemicals from renewable sources. Development of a fundamental understanding of biomass pyrolysis chemistry is difficult due to the multi-scale and multi-phase nature of the process; biomass length scales span 11 orders of magnitude and pyrolysis phenomena include solid, liquid, and gas phase chemistry in addition to heat and mass transfer. These complexities have a significant effect on chemical product distributions and lead to variability between reactor technologies. A major challenge in the study of biomass pyrolysis is the development of kinetic models capable of describing hundreds of millisecond-scale reactions of biomass into lower molecular weight products.;In this work, a novel technique for studying biomass pyrolysis provides the first- ever experimental determination of kinetics and rates of formation of the primary products from cellulose pyrolysis, providing insight into the millisecond-scale chemical reaction mechanisms. These findings highlight the importance of heat and mass transport limitations for cellulose pyrolysis chemistry and are used to identify the length scales at which transport limitations become relevant during pyrolysis. Through this technique, a transition is identified, known as the reactive melting point, between low and high temperature depolymerization. The transition between two mechanisms of cellulose decompositions unifies the mechanisms that govern low temperature char formation, intermediate pyrolysis conditions, and high temperature gas formation.;The conditions under which biomass undergoes pyrolysis, including modes of heat transfer, have been shown to significantly affect the distribution of biorenewable chemical and fuel products. High-speed photography is used to observe the liftoff of initially crystalline cellulose particles when impinged on a heated surface, known as the Leidenfrost effect for room-temperature liquids. Order-of-magnitude changes in the lifetime of cellulose particles are observed as a result of changing modes in heat transfer as cellulose intermediate liquid droplets wet and de-wet polished ceramic surfaces. Introduction of surface macroporosity is shown to completely inhibit the cellulose Leidenfrost effect, providing avenues for surface modification and reactor design to control particle heat transfer in industrial pyrolysis applications.;Cellulosic particles on surfaces consisting of microstructured, asymmetric ratchets were observed to spontaneously move orthogonal to ratchet wells above the cellulose reactive Leidenfrost temperature (>750 °C). Evaluation of the accelerating particles supported the mechanism of propelling viscous forces (50--200 nN) from rectified pyrolysis vapors, thus providing the first example of biomass conveyors with no moving parts driven by high temperature for biofuel reactors. Combined knowledge of pyrolysis chemistry, kinetics, and heat and mass transport effects direct the design of the next generation pyrolysis reactors for tuning bio- oil quality and design of improved catalytic upgrading technology.
机译:生物质热解是一种从可再生资源生产燃料和化学品的热化学方法。由于该过程的多规模和多阶段性质,很难对生物质热解化学有基本的了解。生物质长度尺度跨越11个数量级,热解现象包括固相,液相和气相化学以及传热和传质。这些复杂性会对化学产品的分布产生重大影响,并导致反应器技术之间的差异。生物质热解研究的主要挑战是开发能够描述数百毫秒规模的生物质转化为低分子量产物的动力学模型。在这项工作中,研究生物质热解的新技术提供了首次实验纤维素热解反应动力学和初级产物形成速率的测定,可洞悉毫秒级的化学反应机理。这些发现突出了热量和传质限制对纤维素热解化学的重要性,并用于确定在热解过程中与传热限制相关的长度尺度。通过这种技术,确定了低温解聚和高温解聚之间的过渡,称为反应性熔点。纤维素分解的两种机理之间的过渡统一了控制低温焦炭形成,中间热解条件和高温气体形成的机制。;已表明生物质进行热解的条件(包括传热方式)会显着影响纤维素的分解。分销生物可再生化学品和燃料产品。当撞击到加热的表面上时,高速摄影用于观察最初结晶的纤维素颗粒的剥离,这被称为室温液体的莱顿弗罗斯特效应。观察到纤维素颗粒寿命的数量级变化,这是由于随着纤维素中间液滴润湿和去湿抛光的陶瓷表面而引起的传热模式变化的结果。表面大孔的引入显示出完全抑制了纤维素莱顿弗罗斯特效应,为工业热解应用中的表面改性和反应器设计提供了途径,以控制颗粒的传热。高于纤维素反应性莱顿弗罗斯特温度(> 750°C)的棘轮孔。对加速粒子的评估支持了由精馏热解蒸气推动粘性力(50--200 nN)的机理,从而为生物燃料反应器提供了第一个没有高温移动的运动部件的生物质输送机示例。热解化学,动力学,传热和传质效果的综合知识指导了用于调节生物油质量的下一代热解反应器的设计以及改进的催化升级技术的设计。

著录项

  • 作者

    Krumm, Christoph.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Chemical engineering.;Energy.;Chemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号