首页> 外文学位 >Enabling Desktop Nanofabrication with the Targeted Use of Soft Materials.
【24h】

Enabling Desktop Nanofabrication with the Targeted Use of Soft Materials.

机译:通过有针对性地使用软材料来实现桌面纳米加工。

获取原文
获取原文并翻译 | 示例

摘要

This thesis focuses on the application of soft materials to scanning probe-based molecular printing techniques, such as dip-pen nanolithography (DPN). The selective incorporation of soft materials in place of hard materials in traditional cantilever-based scanning probe lithography (SPL) systems not only enables the deposition of a broader range of materials, but also dramatically lowers the cost while simultaneously increasing the throughput of SPL.;Chapter 1 introduces SPL and DPN, and highlights a few recent advances in using DPN to control surface chemical functionality at the nanoscale. In addition to introducing the material deposition capabilities of DPN, Chapter 1 introduces the development of the cantilever-free architecture, a relatively recent paradigm shift in high-throughput SPL. Furthermore, an in-depth synthetic methodology for making the most widely used cantilever-free tip arrays, consisting of elastomeric nanoscale pens adhered to an elastomeric backing layer on a glass slide, is included as an appendix.;Chapter 2 discusses the synthesis of metal and metal oxide nanoparticles at specified locations by using DPN to deposit the precursors dispersed in a polymer matrix; after deposition, the precursors are annealed to form single nanoparticles. This work builds on previous soft material-based advances in DPN by utilizing the polymer as a "nanoreactor" to synthesize the desired nanoparticles, where the precursors can diffuse and coalesce into a single nanoparticle within each spot. The process of precursor aggregation and single nanoparticle formation is studied, and it is found that metal precursors follow one of three pathways based upon their reduction potential.;Chapter 3 is the first of three chapters that highlights the power of soft materials in the cantilever-free architecture. In particular, Chapter 3 examines the role of the elastomeric backing layer as a compliant spring whose stiffness (as measured by the spring constant, k) can be tuned with a simple chemical change to the composition of the elastomer. In particular, the extent of cross-linking within the elastomer is found to dictate the k the backing layer, and arrays with spring constants tuned from 7 to 150 N/m are described. Furthermore, a simple geometric model is developed that explains the low variation of k within each cantilever-free array; this stands in contrast to arrays of cantilevers, which typically show large variations of k within an array.;Chapter 4 addresses the problem of individual actuation in SPL by embedding resistive heaters directly beneath the elastomeric backing layer. This actuation scheme was chosen because the elastomer used in the cantilever-free tip arrays has extraordinary thermal expansion properties, and thorough exploration of their actuation behavior shows that the heater arrays are fast (> 100 microm/s) and powerful (> 4 microm) enough for actuation. After implementing several corrections for the tip height -- a problem that is intractable without the heaters, and has never been addressed before -- printing of alkanethiols onto Au is demonstrated with a 2D array of individually actuated probes.;Chapter 5 examines the hypothesis that elastomeric tips can absorb solvent and be used to transport materials in the absence of environmental solvent. This is evaluated by first using tip arrays soaked in a nonpolar solvent to pattern a hydrophobic block copolymer that cannot be patterned by traditional DPN, and is subsequently explored for the case of water uptake into the pen arrays. Surprisingly, despite their poor water retention ability, the tip arrays can store enough water to pattern hydrophilic polymers in dry environments for over 2 hours. The dynamics of the solvent absorption are captured by a simple calculation that accounts for the dynamical behavior of water retention and the backing layer thickness, thereby allowing these results to be generalized to other solvents. This exploration of the subtle and dynamic role of absorbed solvent in cantilever-free pen arrays shows that proper pre-treatment of the arrays can be used to obviate the need for an environmental chamber in molecular printing. (Abstract shortened by UMI.).
机译:本文主要研究软材料在基于扫描探针的分子印刷技术中的应用,例如浸涂式纳米光刻(DPN)。在传统的基于悬臂的扫描探针光刻(SPL)系统中,选择性地使用软材料代替硬材料,不仅可以沉积更多种类的材料,还可以显着降低成本,同时提高SPL的产量。第1章介绍了SPL和DPN,并重点介绍了使用DPN控制纳米级表面化学功能的最新进展。除了介绍DPN的材料沉积功能外,第1章还介绍了无悬臂架构的发展,这是高通量SPL中相对较新的范式转变。此外,作为附录,还提供了一种用于合成最广泛使用的无悬臂尖端阵列的深入合成方法,该阵列由粘附到载玻片上的弹性体背衬层上的弹性体纳米级笔组成;第二章讨论了金属的合成通过使用DPN沉积分散在聚合物基质中的前体,在指定位置沉积金属氧化物纳米颗粒;沉积后,将前体退火以形成单个纳米颗粒。这项工作建立在DPN先前基于软材料的先进技术基础上,通过利用聚合物作为“纳米反应器”来合成所需的纳米粒子,其中前体可以扩散并聚结成每个斑点内的单个纳米粒子。研究了前驱体聚集和单个纳米颗粒形成的过程,发现金属前驱体基于其还原电位而遵循三种途径之一。;第三章是三章的第一章,着重介绍了软材料在悬臂中的作用-免费的架构。特别是,第3章研究了弹性体衬层作为顺应性弹簧的作用,其弹性(通过弹簧常数k来衡量)的刚度可以通过对弹性体成分进行简单的化学改变来调节。特别地,发现弹性体内的交联程度决定了背衬层的k,并且描述了具有从7至150N / m调谐的弹簧常数的阵列。此外,开发了一个简单的几何模型,该模型解释了每个无悬臂阵列中k的低变化。这与悬臂阵列相反,悬臂阵列通常在阵列中显示k的较大变化。;第4章通过将电阻加热器直接嵌入弹性体衬层下面解决了SPL中的单个驱动问题。之所以选择这种驱动方案,是因为无悬臂式尖端阵列中使用的弹性体具有非凡的热膨胀特性,并且对其驱动性能的深入研究表明,加热器阵列的速度快(> 100微米/秒),功率强大(> 4微米)。足以驱动。在对笔尖高度进行了多次校正之后(没有加热器就难以解决且以前从未解决过的问题),使用二维阵列的独立驱动探针证明了将链烷硫醇打印到Au上;第5章研究了以下假设弹性尖端可以吸收溶剂,并在没有环境溶剂的情况下用于运输材料。首先通过使用浸泡在非极性溶剂中的笔尖阵列对疏水性嵌段共聚物进行图案化(通过传统DPN无法图案化)进行评估,然后针对笔形阵列中的水分吸收情况进行研究。出人意料的是,尽管它们的保水能力差,但是尖端阵列可以存储足够的水以在干燥环境中使亲水性聚合物形成图案超过2小时。通过简单的计算来捕获溶剂吸收的动力学,该计算考虑了保水和衬层厚度的动力学行为,从而使这些结果可以推广到其他溶剂。对无悬臂笔阵列中吸收的溶剂的微妙和动态作用的探索表明,可以对阵列进行适当的预处理,以消除分子印刷中对环境室的需要。 (摘要由UMI缩短。)。

著录项

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemistry Analytical.;Chemistry Polymer.;Nanotechnology.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号