首页> 外文学位 >Turtles in silico: Using computational fluid dynamics to mechanistically niche model leatherback sea turtles.
【24h】

Turtles in silico: Using computational fluid dynamics to mechanistically niche model leatherback sea turtles.

机译:硅谷海龟:使用计算流体动力学机制对棱皮海龟模型进行机械定位。

获取原文
获取原文并翻译 | 示例

摘要

To aid sea turtle conservation, academic literature and government publications state the need to predict future potential sea turtle nesting sites given different global warming scenarios. To accomplish this goal, managers will need to have a clear picture of how sea turtles respond to many combinations of climatic conditions across turtle migratory ranges and between terrestrial nesting sites and adjacent waters. Because global warming will create climatic combinations sea turtles do not currently encounter, assessing the sea turtle response is difficult and a mechanistic model may be the best approach. Our lab has successfully mechanistically niche mapped many terrestrial animals but not yet an aquatic species. As sea turtles are a marine species, the animal-fluid interactions make constructing a highly accurate mechanistic model complicated. The animal-fluid interaction not only affects the turtle's energy use (through thrust and drag) but also the heat transfer with its environment. To solve these issues we combine modern 3D design programs, computation fluid dynamic (CFD) software and in-house programs to construct a realistic, swimming leatherback sea turtle CFD simulation. These simulations allow us to analyze not only the animal-fluid interaction but also the turtle's internal heat transfer. We validate these models with data from the literature and flume and wind tunnel experiments. This simulation provides inputs for a mechanistic niche model, which can predict where leatherbacks can thermally persist both in water and on land. Thus with the niche model output, we can predict future potential nesting sites under different global warming scenarios. We show that global warming threatens leatherbacks with overheating, particularly in South East Asia. We also show that the impact may be less on leatherbacks that shift their nesting time or location or who are smaller. Methods such these are important to produce accurate maps of regions that will become inhospitable to species under global warming conditions.
机译:为了帮助保护海龟,学术文献和政府出版物指出,在不同的全球变暖情景下,需要预测未来潜在的海龟筑巢地点。为了实现这一目标,管理人员将需要清楚地了解海龟如何应对海龟迁徙范围内以及陆地筑巢点与邻近水域之间许多气候条件的组合。由于全球变暖将造成海龟目前尚不遇到的气候组合,因此评估海龟的响应非常困难,而机械模型可能是最好的方法。我们的实验室已经成功地通过机械方法对许多陆生动物进行了定位,但还没有将水生物种定位。由于海龟是海洋物种,因此动物与流体之间的相互作用使构建高度精确的机械模型变得复杂。动物与流体的相互作用不仅影响乌龟的能量使用(通过推力和阻力),还影响到其周围环境的热传递。为了解决这些问题,我们结合了现代3D设计程序,计算流体动力学(CFD)软件和内部程序,以构建逼真的游泳棱皮海龟CFD模拟。这些模拟使我们不仅可以分析动物与流体的相互作用,还可以分析乌龟的内部热传递。我们用来自文献以及水槽和风洞实验的数据验证了这些模型。此模拟为机械位利基模型提供了输入,该模型可以预测棱皮龟在水中和陆地上在何处可以热滞留。因此,利用利基模型输出,我们可以预测在不同全球变暖情景下未来潜在的筑巢地点。我们表明,全球变暖正威胁着棱皮龟的过热,尤其是在东南亚。我们还表明,对改变筑巢时间或位置或较小的棱皮龟,其影响可能较小。这些方法对于产生准确的区域地图非常重要,这些区域在全球变暖条件下将对物种不利。

著录项

  • 作者

    Dudley, Peter N.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Biology Ecology.;Biology Zoology.;Biology Physiology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号