首页> 外文学位 >Cosmological Consequences of Dark Matter Interactions and Vacuum Fluctuations.
【24h】

Cosmological Consequences of Dark Matter Interactions and Vacuum Fluctuations.

机译:暗物质相互作用和真空波动的宇宙学后果。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is divided into two parts: interacting dark matter and fluctuations in cosmology. There is an incongruence between the properties that dark matter is expected to possess between the early universe and the late universe. Weakly-interacting dark matter yields the observed dark matter relic density and is consistent with large-scale structure formation; however, there is strong astrophysical evidence in favor of the idea that dark matter has large self-interactions. The first part of this thesis presents two models in which the nature of dark matter fundamentally changes as the universe evolves. In the first model, the dark matter mass and couplings depend on the value of a chameleonic scalar field that changes as the universe expands. In the second model, dark matter is charged under a hidden SU(N) gauge group and eventually undergoes confinement. These models introduce very different mechanisms to explain the separation between the physics relevant for freezeout and for small-scale dynamics.;As the universe continues to evolve, it will asymptote to a de Sitter vacuum phase. Since there is a finite temperature associated with de Sitter space, the universe is typically treated as a thermal system, subject to rare thermal fluctuations, such as Boltzmann brains. The second part of this thesis begins by attempting to escape this unacceptable situation within the context of known physics: vacuum instability induced by the Higgs field. The vacuum decay rate competes with the production rate of Boltzmann brains, and the cosmological measures that have a sufficiently low occurrence of Boltzmann brains are given more credence. Upon further investigation, however, there are certain situations in which de Sitter space settles into a quiescent vacuum with no fluctuations. This reasoning not only provides an escape from the Boltzmann brain problem, but it also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere during slow-roll inflation, suggesting that eternal inflation is much less common than often supposed. Instead, decoherence occurs during reheating, so this analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation.
机译:本文分为两个部分:相互作用的暗物质和宇宙学的波动。预期暗物质在早期宇宙和晚期宇宙之间具有的特性之间是不一致的。弱相互作用的暗物质会产生观察到的暗物质残留物密度,并且与大规模结构形成是一致的。然而,有大量的天体物理学证据支持暗物质具有很大的自我相互作用的观点。本文的第一部分提出了两个模型,其中暗物质的本质随着宇宙的发展而发生根本变化。在第一个模型中,暗物质的质量和耦合取决于随宇宙扩展而变化的电子共轭标量场的值。在第二个模型中,暗物质在一个隐藏的SU(N)规范组下带电,并最终受到限制。这些模型引入了非常不同的机制来解释与冻结和小规模动力学有关的物理学之间的分离。随着宇宙的不断发展,它将渐渐进入de Sitter真空阶段。由于与de Sitter空间相关的温度是有限的,因此通常将宇宙视为一个热系统,受到罕见的热波动的影响,例如玻耳兹曼脑。本文的第二部分开始于试图逃避在已知物理学的背景下这种不可接受的情况:由希格斯场引起的真空不稳定性。真空衰减率与玻尔兹曼脑的生产率竞争,并且具有足够低玻尔兹曼脑发生率的宇宙学手段具有更高的可信度。然而,在进一步研究中,在某些情况下,de Sitter空间会陷入没有波动的静态真空中。这种推理不仅避免了玻尔兹曼脑问题的发生,而且还暗示真空状态不会使高能量真空上升,并且在缓慢滚动通气期间扰动不会消失,这表明永恒通气比平常少得多应该。取而代之的是,在重新加热过程中会发生退相干,因此该分析不会改变对原始膨胀引起的密度波动起因的传统理解。

著录项

  • 作者

    Boddy, Kimberly K.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Physics Theory.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号