首页> 外文学位 >Electrical properties of MOS devices fabricated on 4H carbon-face silicon carbide.
【24h】

Electrical properties of MOS devices fabricated on 4H carbon-face silicon carbide.

机译:在4H碳面碳化硅上制造的MOS器件的电性能。

获取原文
获取原文并翻译 | 示例

摘要

It has been over 20 years since research groups started to investigate SiC as the candidate to replace silicon. Many advantages of SiC over silicon have been well recognized. Its wide band-gap (3.3eV vs. 1.1eV for silicon) allows SiC to operate at higher temperature. The high thermal conductivity (3.7W/cm-K vs. 1.5W/cm-K for silicon) can significantly reduce the amount of cooling power required in a system. In addition, SiC has a high electric breakdown field (2.1MV/cm vs. 0.3MV/cm for silicon), which enables SiC to block the same voltage as Si with a 7 times thinner layer, thereby providing a much lower drift resistance for drift layer of similar doping concentration. Moreover, among the wide band gap semiconductors, a unique property of SiC is its native oxide is SiO2, which is the same as the native oxide of Si. This implies that the current silicon MOS device technology can be adopted for SiC MOS device fabrication without much effort in the development of new processing methods.;With its advantages and disadvantages, SiC has been widely investigated. Among many polytypes of SiC, 4H-SiC attracts much interest because this polytype has the largest band-gap energy and a high bulk, almost isotropic bulk mobility. The (0001¯) or carbon-terminated face 4H-SiC has been much less studied than the (0001) Si-terminated face. However, the carbon face 4H-SiC has a higher oxidation rate (×9 higher), which can significantly reduce the fabrication time for SiC MOS devices. Such characteristics would make the carbon face 4H-SiC an ideal candidate of power MOSFETs.;In this dissertation, the basic properties of SiC will be discussed in Chapter 1. The physics of MOS devices will be presented in Chapter 2, and the characteristics of SiC-based MOS devices will be discussed in Chapter 3. The processes and techniques used to fabricate SiC MOS devices will be described in Chapter 4. The results of measurements for MOS capacitors and MOSFETs fabricated on the 4H carbon face will be presented in Chapter 5 to provide an overview of (0001¯) characteristics compared to (0001). Both implanted and epitaxial layers are used to build MOSFETs. The oxide layer is grown thermally in furnace at 1150°C, followed by post-oxidation annealing to passivate the O-S interface. High-purity Mo is sputtered as the gate metal, and source and drain ohmic contacts for the lateral test MOSFETs are produced by sputtering Ni on heavily implanted regions (nitrogen at 6×19cm -3), followed by an anneal at 950°°C for 4min in Ar. Hi-lo capacitance-voltage measurements at both 23°C and 300°C are used to obtain the interface trap density (Dit). Current-voltage measurements at room temperature are used to collect information about oxide leakage and breakdown field (Ebd). A three-probe I-V system is employed to determine Id-V g characteristics of the MOSFETs at room temperature, and the inversion channel mobility (μ) is extracted from these characteristics.;Results are compared for different post-oxidation interface passivation anneals, with the combination of nitric oxide (NO) and H2 giving the lowest trap density Dit in the upper half of the band gap. Wet-reoxidation plus NO passivation produces the most reliable oxide, but the measured breakdown field of 6MV/cm is still approximately 2MV/cm lower than the average field measured for the silicon face. Compared to the values reported by Fukuda, et al., our low field mobility value is not remarkable. However, the high field mobilities are similar. It was observed that the presence of mobile ions can increase our low field channel mobility significantly. For example, after negative bias stress at 250°C to remove possible mobile ions from the O-S interface, the mobility peak value drops from 65cm2/V-s to 35cm2/V-s. These results suggest that the effective channel mobility for the carbon face may not be significantly higher compared to the silicon face. (Abstract shortened by UMI.).
机译:自研究小组开始研究SiC作为替代硅的候选材料以来,已有20多年的历史了。 SiC相对于硅的许多优势已得到公认。它的宽带隙(硅为3.3eV,硅为1.1eV)使SiC可以在更高的温度下工作。高导热性(硅为3.7W / cm-K,硅为1.5W / cm-K)可以显着降低系统所需的冷却功率。此外,SiC具有高的击穿电场(2.1MV / cm对硅而言为0.3MV / cm),这使得SiC能够以薄7倍的厚度阻挡与Si相同的电压,从而为硅提供了更低的抗漂移性掺杂浓度相似的漂移层。此外,在宽带隙半导体中,SiC的独特特性是其自然氧化物是SiO2,与Si的自然氧化物相同。这就意味着目前的硅MOS器件技术可以不费吹灰之力开发新的加工方法而用于SiC MOS器件的制造。凭借其优缺点,人们对SiC进行了广泛的研究。在许多SiC的多型体中,4H-SiC引起了人们的极大兴趣,因为这种多型体具有最大的带隙能和高的体积,几乎各向同性的体积迁移率。 (0001)或碳终止面4H-SiC的研究远少于(0001)Si终止面。但是,碳面4H-SiC的氧化速率较高(高9倍),可以显着减少SiC MOS器件的制造时间。这样的特性将使碳面4H-SiC成为功率MOSFET的理想选择。本文将在第1章中讨论SiC的基本特性。第2章将介绍MOS器件的物理特性,以及MOS器件的特性。第3章将讨论基于SiC的MOS器件。第4章将描述用于制造SiC MOS器件的工艺和技术。第5章将介绍在4H碳面上制造的MOS电容器和MOSFET的测量结果。提供与(0001)相比(0001)特性的概述。注入层和外延层均用于构建MOSFET。氧化层在1150°C的熔炉中热生长,然后进行后氧化退火以钝化O-S界面。溅射高纯度Mo作为栅极金属,并通过在大量注入的区域(6×19cm -3的氮气)上溅射Ni,然后在950°C进行退火,来产生用于横向测试MOSFET的源极和漏极欧姆接触。在Ar中停留4分钟。使用在23°C和300°C时的高-低电容电压测量来获得界面陷阱密度(Dit)。室温下的电流-电压测量用于收集有关氧化物泄漏和击穿场(Ebd)的信息。采用三探针IV系统确定室温下MOSFET的Id-V g特性,并从这些特性中提取反型沟道迁移率(μ)。比较了不同后氧化界面钝化退火的结果,一氧化氮(NO)和H2的组合在带隙的上半部给出最低的陷阱密度Dit。湿式再氧化加NO钝化可生成最可靠的氧化物,但测得的击穿场6MV / cm仍比硅面测得的平均场低约2MV / cm。与Fukuda等人报道的值相比,我们的低场迁移率值并不明显。但是,高场机动性相似。据观察,移动离子的存在可以显着增加我们的低场通道迁移率。例如,在250°C的负偏应力下从O-S界面去除可能的移动离子后,迁移率峰值从65cm2 / V-s下降到35cm2 / V-s。这些结果表明,与硅面相比,碳面的有效沟道迁移率可能不会明显更高。 (摘要由UMI缩短。)。

著录项

  • 作者

    Chen, Zengjun.;

  • 作者单位

    Auburn University.;

  • 授予单位 Auburn University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号