首页> 外文学位 >End healing mechanisms in DNA and RNA repair.
【24h】

End healing mechanisms in DNA and RNA repair.

机译:终止DNA和RNA修复的修复机制。

获取原文
获取原文并翻译 | 示例

摘要

The ability to repair breaks in the phosphodiester backbone of nucleic acids is important for genomic integrity. When breaks result in 5' phosphate and 3' hydroxyl termini, the ends can be sealed by classic polynucleotide ligases in an ATP dependent manner. However, when DNA and RNA damage generate 5' hydroxyl and 3' phosphate (or 2',3' cyclic phosphate) termini, the breaks are termed 'dirty ends' since they cannot be sealed by classic ligases. Mechanistically, the dirty end problem can be solved by two distinct ways -- end healing prior to ligation by classic ligases, and by covalently activating 3' phosphate ends by linkage to GMP. This thesis investigates reaction pathways that restore dirty ends in the context of DNA and RNA repair. Specifically, I have studied end healing of DNA 3' phosphate ends by an archaeal 3' phosphoesterase, the mechanism via which T4 phage opens cyclic phosphate ends in RNA, end healing of 5' hydroxyl RNA ends by a bacterial polynucleotide kinase-phosphatase, RNA 2' phosphate end healing by E. coli RtcA, and DNA 3' phosphate end activation by RtcB, an enzyme previously characterized solely as an RNA ligase.;LigD 3' phosphoesterase (PE) enzymes perform end healing reactions at DNA 3' phosphate breaks. Via structural and mechanistic investigations on a PE enzyme from the archaeon Candidatus Korarchaeum cryptofilum , I established how PE selectively binds to 'soft' metals in its active site, and that proper scissile phosphate and metal coordination geometry are imperative for PE catalysis.;During T4 phage infection, E. coli obstructs viral protein synthesis by inducing cleavage of host cell tRNALys leading to 2',3' cyclic phosphate and 5' hydroxyl RNA breaks. T4 phage repairs the broken RNA backbone via end healing by a polynucleotide kinase phosphatase (T4 Pnkp), and end sealing by an RNA ligase (T4 Rnl1). Using biochemical methods, I discovered that T4 Pnkp removes RNA cyclic phosphate ends by a multi-step processive reaction which involves formation of a 3' phosphoaspartyl-Pnkp followed by a RNA 3' phosphate intermediate, finally forming the RNA 3' hydroxyl end, thereby priming the RNA for ligation by T4 Rnl1. I also discovered a hitherto unknown 2' phosphatase activity of T4 Pnkp.;Clostridium thermocellum (Cth) Pnkp typifies a different flavor of RNA repair enzyme found in diverse bacterial taxa. I solved crystal structures of CthPnkp kinase at discrete states along the reaction pathway that helped reconstruct end healing by the kinase domain at atomic resolution. An absence of contacts to the ATP nucleoside moiety in the CthPnkp•ATP•Mg2+ structure hinted at non-specific nucleotide utilization by CthPnkp kinase (which I confirmed by biochemical assays). The structure of CthPnkp•GTP•Mg2+•DNA Michaelis complex illustrated a mechanism of general acid-base catalysis and identified the determinants of phosphoacceptor recognition.;A different solution to the dirty end problem lies in covalent activation of 3' phosphate ends by linkage to GMP. I discovered a novel DNA splicing activity in E. coli RtcB, which had been previously characterized solely as an RNA ligase. I demonstrated that RtcB catalyzes direct ligation of DNA 3' phosphate/5' hydroxyl ends via a unique 3' end activating chemical mechanism, distinct from known DNA ligases insofar as it does not require 'end healing' prior to ligation, and uses GTP instead of ATP as the energy source.
机译:修复核酸的磷酸二酯主链中的断裂的能力对于基因组完整性是重要的。当断裂产生5'磷酸和3'羟基末端时,末端可以通过经典的多核苷酸连接酶以ATP依赖性方式密封。但是,当DNA和RNA损伤产生5'羟基和3'磷酸酯(或2',3'环状磷酸酯)末端时,这些断裂被称为“肮脏末端”,因为它们不能被经典的连接酶封闭。从机理上讲,肮脏的末端问题可以通过两种不同的方法解决:通过经典的连接酶在连接之前进行末端修复,以及通过与GMP的连接共价活化3'磷酸末端。本文研究了在DNA和RNA修复过程中还原脏端的反应途径。具体来说,我研究了古细菌3'磷酸酯酶对DNA 3'磷酸末端的末端修复,T4噬菌体通过该机制打开RNA中的环状磷酸酯末端,细菌多核苷酸激酶磷酸酶(RNA)对5'羟基RNA末端进行末端修复大肠杆菌RtcA的2'磷酸末端修复,RtcB的DNA 3'磷酸末端激活,该酶以前仅以RNA连接酶为特征; LigD 3'磷酸酯酶(PE)酶在DNA 3'磷酸断裂处进行末端修复反应。通过对古细菌Candidatus Korarchaeum cryptofilum的PE酶的结构和机理研究,我确定了PE如何选择性地与其活性位点上的``软''金属结合,并且适当的易裂磷酸盐和金属配位几何形状对PE催化是必不可少的。噬菌体感染时,大肠杆菌通过诱导宿主细胞tRNALys的裂解而导致2',3'环状磷酸酯和5'羟基RNA断裂,从而阻碍了病毒蛋白的合成。 T4噬菌体通过多核苷酸激酶磷酸酶(T4 Pnkp)的末端修复和RNA连接酶(T4 Rnl1)的末端密封来修复断裂的RNA主链。使用生化方法,我发现T4 Pnkp通过多步过程反应除去了RNA环状磷酸酯末端,该反应涉及形成3'磷酸天冬氨酰-Pnkp,然后形成RNA 3'磷酸酯中间体,最后形成RNA 3'羟基末端,从而用T4 Rnl1引发RNA的连接。我还发现了迄今为止未知的T4 Pnkp的2'磷酸酶活性。热纤梭菌(Cth)的Pnkp代表了在不同细菌类群中发现的另一种RNA修复酶的味道。我沿反应路径解析了处于离散状态的CthPnkp激酶的晶体结构,该结构有助于通过激酶结构域以原子分辨率重建末端愈合。 CthPnkp•ATP•Mg2 +结构中与ATP核苷部分不存在接触提示CthPnkp激酶对核苷酸的非特异性利用(我已通过生化分析证实)。 CthPnkp•GTP•Mg2 +•DNA Michaelis配合物的结构说明了一般酸碱催化的机理,并确定了磷酸受体识别的决定因素。解决脏末端问题的另一种方法是通过与3'磷酸末端连接来共价活化3'磷酸末端GMP。我在大肠杆菌RtcB中发现了一种新的DNA剪接活性,以前仅将其表征为RNA连接酶。我证明RtcB通过独特的3'末端活化化学机制催化DNA 3'磷酸/ 5'羟基末端的直接连接,这与已知的DNA连接酶不同,因为它不需要在连接前进行“末端愈合”,而是使用GTP ATP作为能源。

著录项

  • 作者

    Chakravarty, Ushati Das.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Biology Molecular.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 287 p.
  • 总页数 287
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号