首页> 外文学位 >Determining basin geometry, stability, and flow dynamics of valley glaciers with ground-penetrating radar.
【24h】

Determining basin geometry, stability, and flow dynamics of valley glaciers with ground-penetrating radar.

机译:用探地雷达确定盆地冰川的几何形状,稳定性和流动力学。

获取原文
获取原文并翻译 | 示例

摘要

Mountain glaciers and ice caps (GICs) currently contribute ~0% to annual sea level rise. Most are temperate, therefore having the potential for rapid retreat from rising atmospheric temperatures. This climate sensitivity makes GIC stability and their impact on sea level rise a scientific problem with societal implications. To accurately predict impacts from GIC changes, knowledge of glacier components (e.g., basin geometry, mass balance, and dynamics) is needed. The goal of my dissertation research is to determine information about glacier geometry, snow-fire, and englacial stratigraphy using ground-penetrating radar (GPR) to enhance our understanding of valley glacier mass balance, dynamics, and stability. I first examine glacier basin geometry and ice volume of two temperate glaciers (Jarvis Glacier, Alaska and Nisqually Glacier, Washington) and demonstrate that significant errors (≥30-50%) can arise when using empirically-based volume estimates without geophysical constraints. I next determine spatial variability of accumulation across the temperate Juneau Icefield in Alaska usina GPR to interpolate between snowpits. To accomplish this, the dependence of radar velocity on snow density (~.3-0.7 g cm -3) and water content (0-9% by volume) needs to be addressed. Results show that on average, 2.1+/-0.5 m (water equivalent) of winter snow accumulates across the icefield with accumulation patterns depending on elevation, aspect, and proximity to moisture source. The third component of my dissertation combines locally measured accumulation rates, ice flow velocities, and englacial structures imaged with GPR to calculate that a negative mass balance (-0.25 cm a -1) has existed in valley glaciers of the Pensacola Mountains, West Antarctica over the past 1200 years. Finally, 1 use a 3-dimensional finite element non-Newtonian model to characterize the stress fields and current dynamics of a small ice divide. GPR-derived basin geometry is used for model boundary conditions and field-measured velocities, derived strain rates, and GPR-imaged englacial features are used to validate the model. Combined results show that GPR is a powerful tool for developing knowledge of glacier geometry, snow-fire structure, and englacial stratigraphy to enhance our understanding of valley glacier history, dynamics, and stability. Ultimately, this enhanced understanding is useful for refining estimates of future G1C sea level rise contributions.
机译:目前,高山冰川和冰盖(GIC)对年度海平面上升的贡献约为0%。大多数是温带的,因此有可能从大气温度的上升中迅速退缩。这种气候敏感性使GIC的稳定性及其对海平面的影响成为一个具有社会意义的科学问题。为了准确预测GIC变化带来的影响,需要了解冰川成分(例如盆地几何形状,质量平衡和动力学)。我的论文研究的目的是使用探地雷达(GPR)来确定有关冰川几何,雪火和冰川地层的信息,以加深我们对山谷冰川质量平衡,动力学和稳定性的了解。我首先检查了两个温带冰川(阿拉斯加的贾维斯冰川和华盛顿的尼斯奎利冰川)的冰川盆地几何形状和冰量,并证明当使用基于经验的无地球物理约束的体积估算时,可能会出现重大误差(≥30-50%)。接下来,我确定在阿拉斯加usina GPR的温带朱诺冰原上积雪的空间变异性,以在雪坑之间进行插值。为此,需要解决雷达速度对积雪密度(〜.3-0.7 g cm -3)和水含量(0-9%体积)的依赖性。结果表明,平均而言,整个冰场上积雪量为2.1 +/- 0.5 m(当量水),其积雪模式取决于海拔高度,坡向和与水分源的接近程度。本文的第三部分结合了局部测量的累积速率,冰流速度和用GPR成像的冰川结构,计算出西极南极彭萨科拉山脉的山谷冰川中存在负质量平衡(-0.25 cm a -1)。过去的1200年最后,1使用3维有限元非牛顿模型来表征小冰块的应力场和当前动态。 GPR派生的盆地几何学用于模型边界条件,实地测得的速度,导出的应变率和GPR成像的冰川特征用于验证模型。综合结果表明,GPR是开发冰川几何学,雪火结构和冰川地层学知识的有力工具,可增进我们对山谷冰川历史,动力学和稳定性的了解。最终,这种加深的理解对于完善对未来G1C海平面上升贡献的估算很有用。

著录项

  • 作者

    Campbell, Seth William.;

  • 作者单位

    The University of Maine.;

  • 授予单位 The University of Maine.;
  • 学科 Geophysics.;Climate Change.;Paleoclimate Science.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号