首页> 外文学位 >Manipulating Protein Stability with Small Molecules: Applications in studying biological systems and accessing new drug targets.
【24h】

Manipulating Protein Stability with Small Molecules: Applications in studying biological systems and accessing new drug targets.

机译:用小分子操纵蛋白质的稳定性:在研究生物系统和获得新药物靶标中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The development of new drugs has traditionally focused on the discovery and optimization of small molecule inhibitors. Despite the success of small molecule inhibitors in treating many diseases, it has been estimated that as much as 80% of all proteins encoded by the human genome cannot be targeted by this therapeutic modality (i.e. are undruggable). The vast size of the undruggable proteome results in a need for a general method to develop small molecules that can alter the activity of any target protein, not just those with enzymatic activity and tractable active sites. Towards that end, we developed hydrophobic t&barbelow;ags (HyTs), a class of small molecules that bind to a protein of interest, thermodynamically destabilize the target protein, and induce the protein's degradation by the ubiquitin-proteasome system.;Chapter 1 describes our work developing a HaloTag-based small molecule microarray (SMM) technique that exhibits increased sensitivity in detecting protein-small molecule binding interactions compared to previous SMM techniques described in the literature. We provide a head-to-head comparison between HaloTag-based SMMs and the traditional antibody-based SMMs, and we introduce the possibility of multiplex screening. A multiplex screen for small molecule ligands specific to the protein tyrosine phosphatase 1B trapped in its second transition state yielded ligands that interact with orthovanadate-bound PTP1B. SMM screening should facilitate the discovery of small molecule ligands that bind to any protein of interest. These small molecules may then be derivatized into hydrophobic tags that induce the degradation of the proteins of interest in cells.;Chapter 2 describes our work characterizing hydrophobic tags (HyTs) and protein stabilizers using the model protein, HaloTag2. Our work studying this system yielded insights into the mechanisms through which HyTs and protein stabilizers can exert their effects in cells. HyT36 binds to the HaloTag2 protein and induces its thermodynamic destabilization, leading to its association with Hsp70 and subsequent degradation via the ubiquitin-proteasome system. Conversely, the HaloT&barbelow;ag S&barbelow;tabilizer (HALTS1) binds to the HaloTag2 protein in the same active site as HyT36 but stabilizes the protein and increases its levels in the cell. We also discuss how the combination of HyT36 and HALTS1 led us to a HyT/HALTS system whereby any protein of interest can be fused to HaloTag2 and have its cellular levels increased 4-fold or decreased 10-fold using the corresponding small molecule.;Chapter 3 describes our initial work exploring whether hydrophobic tags can be targeted to non-cytosolic proteins. For this initial work, we localized the HaloTag2 protein to the endoplasmic reticulum. Destabilizing this Endoplasmic Reticulum Localized HaloTag2 (ERHT) protein using HyT36 did not induce significant degradation but did activate the unfolded protein response (UPR). The ERHT system provided a unique opportunity for us to study activation of the UPR without inducing apoptosis. Treatment of ERHT-expressing cells with HyT36 induced an acute, resolvable endoplasmic reticulum stress that resulted in transient UPR activation without induction of apoptosis. Transcriptome analysis of late-stage responses to this UPR stimulus revealed a link between UPR activity and estrogen signaling: UPR signaling induces estrogen receptor transcriptional activity, which modulates future sensitivity to endoplasmic reticulum stress. Estrogen receptor activation desensitizes MCF7 cells to endoplasmic reticulum stress, and conversely, estrogen receptor inhibition sensitizes MCF7 cells to endoplasmic reticulum stress. Additionally, estrogen receptor inhibition in multiple myeloma cell lines sensitized those cells to UPR activation and apoptosis induced by the proteasome inhibitor, epoxomicin.;Chapter 4 takes a detour from the development of hydrophobic tags to instead focus on the development of a novel, bio-orthogonal protein-small molecule ligand pair. Using crystal structures of HALTS1 bound to HaloTag7, we developed a new small molecule (HALTS2) that binds specifically to a mutated HaloTag7 protein containing W151L and N51L mutations. This mutated protein is incapable of binding to chloroalkanes, meaning that the interaction between HALTS2 and the mutant protein is completely orthogonal to the interaction between chloroalkane-containing compounds and HaloTag7. These two protein-ligand pairs can be used together in future work focused on chemical-induced dimerization.;Finally, chapter 5 offers my perspective on the future of HyTs and protein stabilizers as therapeutic modalities. I discuss the most critical remaining questions that should be addressed in the future development of HyTs. it is our hope that the pursuit of hydrophobic tags and protein stabilizers will eventually enable the development of new drugs to target currently untreatable diseases.
机译:传统上,新药的开发一直集中在小分子抑制剂的发现和优化上。尽管小分子抑制剂在治疗许多疾病方面取得了成功,但是据估计,人类基因组编码的所有蛋白质中有多达80%不能通过这种治疗方式靶向(即不可药物治疗)。不可食用蛋白质组的巨大规模导致需要一种通用的方法来开发能够改变任何目标蛋白质活性的小分子,而不仅仅是具有酶促活性和易处理活性位点的蛋白质。为此,我们开发了疏水性T&barbeags(HyTs),这是一类与目标蛋白质结合的小分子,其热力学上破坏了目标蛋白质的稳定性,并通过泛素-蛋白酶体系统诱导蛋白质的降解。;第1章描述了我们致力于开发基于HaloTag的小分子微阵列(SMM)技术,与文献中描述的以前的SMM技术相比,该技术在检测蛋白质-小分子结合相互作用方面表现出更高的灵敏度。我们提供了基于HaloTag的SMM与传统的基于抗体的SMM的直接对比,并介绍了多重筛选的可能性。多重筛选特定于蛋白质酪氨酸磷酸酶1B处于第二过渡状态的小分子配体产生的配体与原钒酸酯结合的PTP1B相互作用。 SMM筛选应有助于发现与任何目标蛋白质结合的小分子配体。然后可以将这些小分子衍生为疏水性标签,从而诱导细胞中目标蛋白质的降解。第二章介绍了我们使用模型蛋白HaloTag2表征疏水性标签(HyTs)和蛋白质稳定剂的工作。我们研究该系统的工作深入了解了HyT和蛋白稳定剂可在细胞中发挥作用的机制。 HyT36与HaloTag2蛋白结合并诱导其热力学不稳定,从而导致其与Hsp70缔合,并随后通过遍在蛋白-蛋白酶体系统降解。相反,HaloT&agta&tabilizer(HALTS1)在与HyT36相同的活性位点结合HaloTag2蛋白,但稳定了该蛋白并增加了其在细胞中的水平。我们还讨论了HyT36和HALTS1的组合如何将我们引向HyT / HALTS系统,由此可以将任何目标蛋白质与HaloTag2融合,并使用相应的小分子将其细胞水平提高4倍或降低10倍。图3描述了我们的初步工作,探讨疏水标签是否可以靶向非胞质蛋白。对于此初始工作,我们将HaloTag2蛋白定位于内质网。使用HyT36破坏此内质网局部HaloTag2(ERHT)蛋白的稳定性不会引起明显的降解,但会激活未折叠的蛋白反应(UPR)。 ERHT系统为我们提供了一个独特的机会来研究UPR的激活而不诱导细胞凋亡。用HyT36处理表达ERHT的细胞诱导了急性的,可分辨的内质网应激,导致瞬时UPR激活而未诱导凋亡。对这种UPR刺激的后期反应的转录组分析揭示了UPR活性与雌激素信号传导之间的联系:UPR信号诱导雌激素受体转录活性,从而调节未来对内质网应激的敏感性。雌激素受体激活使MCF7细胞对内质网应激不敏感,相反,雌激素受体抑制使MCF7细胞对内质网应激敏感。此外,多种骨髓瘤细胞系中雌激素受体的抑制作用使这些细胞对蛋白酶体抑制剂埃博霉素诱导的UPR活化和细胞凋亡敏感。第4章绕开了疏水性标签的开发,转而专注于新型生物标签的开发。正交蛋白质-小分子配体对。使用结合到HaloTag7的HALTS1的晶体结构,我们开发了一种新的小分子(HALTS2),它特异性结合包含W151L和N51L突变的突变HaloTag7蛋白。这种突变的蛋白无法与氯代烷烃结合,这意味着HALTS2与突变蛋白之间的相互作用与含氯代烷烃的化合物与HaloTag7之间的相互作用完全正交。这两个蛋白质-配体对可以在未来的工作中一起使用,重点是化学诱导的二聚化。最后,第5章就HyTs和蛋白质稳定剂作为治疗手段的未来提出了我的看法。我讨论了HyT未来发展中应解决的最关键的剩余问题。我们希望,对疏水标签和蛋白质稳定剂的追求最终将使开发针对当前无法治愈的疾病的新药成为可能。

著录项

  • 作者

    Noblin, Devin J.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Biology Molecular.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号