首页> 外文学位 >Point Mutational Examination of Eukaryotic Initiation Factor 4E (eIF4E), Inclusion Bodies Analysis, and Barley yellow dwarf virus (BYDV) Exonuclease Resistant RNA Structure Mapping and Prediction
【24h】

Point Mutational Examination of Eukaryotic Initiation Factor 4E (eIF4E), Inclusion Bodies Analysis, and Barley yellow dwarf virus (BYDV) Exonuclease Resistant RNA Structure Mapping and Prediction

机译:真核生物起始因子4E(eIF4E)的点突变检查,包涵体分析和大麦黄矮病毒(BYDV)核酸外切酶抗性RNA结构定位和预测

获取原文
获取原文并翻译 | 示例

摘要

Eukaryotic initiation factor 4E (eIF4E) binds the 5'm7GTP cap structure of mRNA in order to facilitate effective translation. Recessive eIF4E alleles harboring naturally occurring point mutations have been associated with resistance to viral infection, particularly in members of the genus Potyvirus . Resistance is thought to be conferred by disrupting the binding of the 5' viral-encoded protein (VPg), covalently attached to the 5' end of the Potyvirus genomic RNA, to eIF4E. RNAs of members of the genus Panicovirus, some Carmoviruses and one Umbravirus however, bind eIF4E through a 3' cap independent translation element (3'CITE) termed the PTE ( Panicum mosaic virus-like translation enhancer). The PTE consists of a T shaped secondary structure with a C-rich region at the branch point between stem loops 1 and 2 and G-rich region in a bulge in the basal stem loop. The C-rich and G-rich regions form a pseudoknot where the G-rich region contains a flexible G that is thought to flip outward and potentially act as a 5' m7GTP cap analog to bind eIF4E. Point mutations were introduced into wheat eIF4E in order to identify amino acids needed for PTE binding and were designed based on previous studies of recessive resistance-conferring eIF4E alleles, along with the crystal structure of wheat eIF4E bound to m7GDP. However, the chosen method of eIF4E purification involving a glutathione S-transferase (GST) tag repeatedly resulted GST-eIF4E inclusion bodies, which limited the ability to purify mutant eIF4E for binding studies. Therefore a large portion of this work is concerned with attempts to solubilize the GST-eIF4E fusion protein.;Additionally, the second portion of this work involves mapping and predicting the structure in Barley yellow dwarf virus RNA (BYDV) that blocks exonuclease Xrn1 to generate BYDV subgenomic RNA3. Deletion analysis places the Xrn1 resistant (xrRNA) structure within the first 5' 67 nucleotides of BYDV sgRNA3. Dianthoviruses, related to luteoviruses, have recently been shown to contain an xrRNA structure of which a crystal structure has been obtained. Bioinformatics analysis using the programs INFERNAL and Dynalign suggest the BYDV sgRNA3 xrRNA structure may be different than that of dianthoviruses. A proposed secondary structure of BYDV sgRNA3 xrRNA was obtained by analysis with the programs DotKnot and RNAalifold.
机译:真核起始因子4E(eIF4E)结合mRNA的5'm7GTP帽结构,以促进有效翻译。具有自然发生的点突变的隐性eIF4E等位基因与病毒感染的抵抗力有关,特别是在波多病毒属成员中。认为抗性是通过破坏共价附着于波多病毒基因组RNA 5'末端的5'病毒编码蛋白(VPg)与eIF4E的结合而实现的。然而,Panicovirus属成员,一些Carmoviruses和一种Umbravirus成员的RNA通过称为PTE(Panicum花叶病毒样翻译增强子)的3'帽独立翻译元件(3'CITE)结合eIF4E。 PTE由T形二级结构组成,在茎环1和2之间的分支点具有C富集区域,在基茎环的凸出部分具有G富集区域。 C富集区和G富集区形成假结,其中G富集区包含一个柔性G,该G被认为可以向外翻转,并可能充当5'm7GTP帽类似物以结合eIF4E。将点突变引入小麦eIF4E中以鉴定PTE结合所需的氨基酸,并基于先前的隐性抗性赋予eIF4E等位基因以及结合到m7GDP的小麦eIF4E的晶体结构进行设计。但是,选择的涉及谷胱甘肽S-转移酶(GST)标签的eIF4E纯化方法反复产生了GST-eIF4E包涵体,这限制了纯化突变eIF4E进行结合研究的能力。因此,这项工作的很大一部分与增溶GST-eIF4E融合蛋白有关。这项工作的第二部分涉及对大麦黄矮病毒RNA(BYDV)的结构进行定位和预测,该RNA阻断核酸外切酶Xrn1的产生。 BYDV亚基因组RNA3。缺失分析将Xrn1抗性(xrRNA)结构置于BYDV sgRNA3的前5'67个核苷酸内。与黄病毒有关的点状病毒最近已被证明含有一种xrRNA结构,该结构已获得晶体结构。使用程序INFERNAL和Dynalign进行的生物信息学分析表明BYDV sgRNA3 xrRNA的结构可能与鼻病毒的结构不同。通过使用DotKnot和RNAalifold程序进行分析,获得了BYDV sgRNA3 xrRNA的拟议二级结构。

著录项

  • 作者

    Sheber, Melissa.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Biochemistry.
  • 学位 M.S.
  • 年度 2018
  • 页码 99 p.
  • 总页数 99
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号