首页> 外文学位 >Tunable all electric spin polarizer.
【24h】

Tunable all electric spin polarizer.

机译:可调全电动自旋偏振器。

获取原文
获取原文并翻译 | 示例

摘要

To realize the full potential of spin-based devices, ways must be found to inject, manipulate, and detect the spin of the electron by purely electrical means. Previously, our group has shown that a quantum point contact (QPC) with lateral spin orbit coupling (LSOC) can be used to create a strongly spin-polarized current by purely electrical means. The LSOC results from the lateral in-plane electric field created by the confining potential in QPCs with in-plane side gates (SGs). Strongly spin-polarized currents can be generated by tuning the asymmetric bias voltages on the side gates. A conductance anomaly in the form of a plateau at conductance G ≅ 0.5G0 (where G 0 = 2e2/h) was observed in the ballistic conductance of a QPC based in the absence of magnetic field - which was established to be a signature of complete spin polarization. A Non-Equilibrium Green's Function (NEGF) analysis was used to model a small QPC and three ingredients were found to be essential to generate a strong spin polarization: (1) LSOC, (2) an asymmetric lateral confinement, and (3) a strong electron-electron (e-e) interaction. We have also shown that all-electric control of spin polarization can be achieved for different materials, electron mobility, heterostructure design, QPC dimensions and strength of LSOC.;Our previous experimental and theoretical results have also found the presence of other conductance anomalies (i.e., at values different from 0.5 G0 ) and the main reason for these occurrences was shown to be due to the influence of surface roughness scattering. In this thesis, we address the important technological challenge to better control the location of the conductance anomalies in QPCs and create a tunable all-electric spin polarizer based on a QPC with four gates, i.e., with two in-plane SGs in series. Here, the first pair of SGs, near the source, is asymmetrically biased to create spin polarization in the QPC channel. The second set of gates, near the drain, is symmetrically biased and that bias is varied to maximize the amount of spin polarization in the channel. We have fabricated several InAs based QPCs with four SGs and have shown that the experimental results were in qualitative agreement with our NEGF simulations. Our main finding is that the range of common mode bias on the first set of gates over which maximum spin polarization can be achieved is much broader for the four gate structure compared to the case of a single pair of in-plane SGs.;In addition, we have observed both hysteresis and negative differential regions in the conductance for specific biasing conditions. We believe these are evidence of Coulomb and Spin Blockade effects on the conductance of these devices and cannot be explained within the context of a NEGF approach and require a many-body approach to the description of carrier transport. Our studies suggest that the study of spin valve structures composed of a quantum dot or wire coupled to the source and drain via asymmetrically biased QPCs should open a new area in the field of spintronics.
机译:为了实现基于自旋的器件的全部潜力,必须找到通过纯电子手段注入,操纵和检测电子自旋的方法。以前,我们的小组已经证明,具有侧向自旋轨道耦合(LSOC)的量子点接触(QPC)可用于通过纯电子方式产生强自旋极化电流。 LSOC是由具有平面内侧栅极(SGs)的QPC中的约束电位所产生的横向平面内电场产生的。通过调节侧栅极上的不对称偏置电压,可以产生强自旋极化电流。在没有磁场的情况下,在QPC的弹道电导中观察到电导为G≥0.5G0的高原形式的电导异常(其中G 0 = 2e2 / h)-被确定为完全的标志自旋极化。使用非平衡格林函数(NEGF)分析对小的QPC进行建模,发现三种成分对于产生强自旋极化至关重要:(1)LSOC,(2)不对称的横向约束,以及(3)a强电子-电子(ee)相互作用。我们还表明,对于不同的材料,电子迁移率,异质结构设计,QPC尺寸和LSOC的强度,都可以实现自旋极化的全电控制。我们先前的实验和理论结果还发现了其他电导异常(即,其值不同于0.5 G0),并且出现这些现象的主要原因是由于表面粗糙度散射的影响。在这篇论文中,我们解决了重要的技术挑战,以更好地控制QPC中电导异常的位置,并基于具有四个门(即两个串联的平面SG)的QPC创建可调谐的全电自旋偏振器。在此,靠近源极的第一对SG受到非对称偏置,从而在QPC通道中产生自旋极化。靠近漏极的第二组栅极受到对称偏置,并且该偏置会发生变化,以使通道中的自旋极化量最大化。我们已经制造了几个具有四个SG的基于InAs的QPC,并且表明实验结果与我们的NEGF模拟在质量上吻合。我们的主要发现是,与一对平面内SG相比,四栅极结构在第一组栅极上可获得最大自旋极化的共模偏置范围要宽​​得多。 ,我们已经观察到在特定偏置条件下电导中的磁滞和负微分区域。我们认为,这些是库仑和自旋封锁对这些器件电导的影响的证据,无法在NEGF方法的背景下进行解释,而是需要采用多体方法来描述载流子运输。我们的研究表明,对由通过非对称偏置QPC耦合到源极和漏极的量子点或导线组成的自旋阀结构的研究应该会在自旋电子学领域开辟一个新领域。

著录项

  • 作者

    Bhandari, Nikhil K.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号