首页> 外文学位 >Development of Anti-fouling Membranes for Water Treatment
【24h】

Development of Anti-fouling Membranes for Water Treatment

机译:水处理防污膜的研制

获取原文
获取原文并翻译 | 示例

摘要

The goal of my dissertation research was to devise new strategies to combat membrane fouling, which is a major hindrance in water treatment systems. Membrane fouling refers to the blocking of pores and the build-up of material on the membrane surface. There are many types of foulants, including but not limited to bacteria, biopolymers (such as alginate), natural organic matter, oils, proteins, particles, and salts (such as gypsum). Typical ways to combat fouling include expensive pretreatment procedures, physical membrane cleaning, and chemical treatments to the membranes. Chemical treatments tend to decrease the membrane lifetime, especially for nanofiltration and reverse osmosis membranes. One common strategy in the research community is to surface modify membranes to increase their fouling resistance. Chapter 1 reviews the surface modification methods used to reduce membrane fouling.;Chapter 2 presents my work on modifying ultrafiltration membranes with poly(2-((2-hydroxy-3-(methacryloyloxy)propyl)dimethylammonio)acetate) (poly(CBOH), a polymer that switches reversibly between a zwitterionic chemistry and a quaternary amine chemistry. Surface characterization showed successful membrane modification by UV-graft polymerization. Bacteria deposition studies showed that the poly(CBOH) chemistry performed better than other common anti-fouling chemistries. Biofilm studies showed that poly(CBOH) functionalized polyethersulfone membranes accumulated half the biovolume as unmodified membranes. Poly(CBOH) switches from an anti-fouling, zwitterion mode to an anti-microbial, quaternary amine mode by changing the environment pH. Studies were done to characterize the switching pH and time using poly(CBOH) modified silicon wafers. Switching pH was determined to be 1.0, with 15 min being required to switch between the zwitterion and quaternary amine chemistries. Biofilm mortality was elevated on ultrafiltration membranes once the anti-fouling poly(CBOH) zwitterion was switched to the anti-microbial, poly(CB-Ring) quaternary amine, with dead-to-live cell ratio increasing from 0.33 to 1.04.;Chapter 3 describes my work to increase the fouling resistance of nanofiltration membranes by applying both a chemical coating and a nanometer sized pattern to the membrane surfaces. A line and groove nano-pattern was applied by thermal embossing directly onto a commercial polyamide thin-film composite nanofiltration membrane. Poly(ethylene glycol) diglycidyl ether (PEGDE) was reacted onto the patterned membrane surfaces by an epoxide ring opening reaction with unreacted carboxyl groups on the polyamide selective layer. Surface characterization showed successful nano-patterning and chemical modification of the membrane surfaces. Membrane performance (flux and salt rejection) was unaffected by patterning the polyamide membrane surface directly. The fouling results show that combining line and groove nano-patterning with PEGDE chemical modification yields a membrane that was more resistant to fouling than either method alone.;Chapter 4 presents my work to apply a nanometer sized pattern onto numerous commercial nanofiltration and reverse osmosis polyamide membranes. There have been differing views on the ability to pattern polyamide thin-film composite (TFC) membranes directly by nanoimprint lithography. The goal of this study was to understand what factors control patternability, working towards a set of heuristics for use by the membrane community to pattern any polyamide TFC membrane. Initial results showed that each membrane patterned to a different degree. Despite completing a comprehensive set of experiments to investigate the roles played by membrane chemistry, surface properties, mechanical properties, and performance properties on pattern peak heights for thirteen commercial nanofiltration and reverse osmosis membranes, I found no correlation between the variables studied and patternability of individual membranes. I did discover significant differences in patternability between membranes grouped by polyamide class, with those prepared by interfacial polymerization of m-phenylenediame and trimesoyl chloride having the largest pattern peak heights. I further discovered that the humectant (pore filler) used for membrane preservation plays a role on the patternability of the membranes. Upon replacement of the original humectants used by the membrane manufacturers with a 15 wt% glycerol solution, the pattern peak heights approached a similar value for each class of membranes. Tests performed to elucidate the role of the glycerol on patternability were inconclusive. Thus, while the humectant clearly contributes to membrane patternability, the reason why remains unknown.;Overall, my research demonstrates the ability to reduce membrane biofouling by changing surface chemistry and surface features. Results of my work contribute to our understanding of membrane fouling and can be used to develop next-generation water treatment membranes with improved fouling resistance. Such membranes could be expected to lower the operations cost of using membranes to clean water.
机译:我的论文研究的目的是设计新的方法来对抗膜污染,这是水处理系统的主要障碍。膜结垢是指孔的阻塞和膜表面材料的堆积。污垢的类型很多,包括但不限于细菌,生物聚合物(例如藻酸盐),天然有机物,油,蛋白质,颗粒和盐(例如石膏)。防止结垢的典型方法包括昂贵的预处理程序,物理膜清洁以及对膜的化学处理。化学处理往往会缩短膜的使用寿命,尤其是对于纳滤和反渗透膜而言。在研究界中,一种常见的策略是对膜进行表面改性以增加其抗污性。第1章介绍了用于减少膜结垢的表面改性方法。;第2章介绍了我用聚(2-((2-羟基-3-(甲基丙烯酰氧基)丙基)二甲基氨)乙酸)(聚(CBOH)改性超滤膜的工作,一种可在两性离子化学和季胺化学之间可逆转换的聚合物,表面表征显示可通过UV接枝聚合成功地进行膜改性,细菌沉积研究表明,聚(CBOH)化学性能优于其他常见的防污化学。研究表明,聚(CBOH)官能化的聚醚砜膜的生物体积是未修饰膜的一半,聚(CBOH)通过改变环境pH值从防污两性离子模式转换为抗微生物季胺模式。用聚(CBOH)改性的硅片表征转换pH和时间,转换pH被确定为1.0,需要15分钟在两性离子和季胺化学之间切换。一旦将防污聚(CBOH)两性离子转换为抗微生物聚(CB-Ring)季胺,超滤膜上的生物膜死亡率就会提高,死活细胞比从0.33增至1.04。图3描述了我通过在膜表面施加化学涂层和纳米尺寸的图案来增加纳米过滤膜的抗污性的工作。通过热压花将线和槽纳米图案直接施加到商业聚酰胺薄膜复合纳米过滤膜上。通过环氧开环反应使聚(乙二醇)二缩水甘油醚(PEGDE)与聚酰胺选择性层上未反应的羧基反应到图案化的膜表面上。表面表征显示成功的纳米图案和膜表面的化学改性。通过直接图案化聚酰胺膜表面不会影响膜性能(助焊剂和除盐性能)。结垢结果表明,将线和槽纳米图案与PEGDE化学改性相结合,可以得到比单独使用任何一种方法都更耐结垢的膜。;第4章介绍了我的工作,是将纳米尺寸的图案应用于多种商业纳米过滤和反渗透聚酰胺膜。关于通过纳米压印光刻直接图案化聚酰胺薄膜复合材料(TFC)膜的能力,存在不同的观点。这项研究的目的是了解哪些因素控制了可构图性,并努力探索一套可启发性的方法,供膜界用来对任何聚酰胺TFC膜进行构图。初步结果表明,每种膜的图案化程度不同。尽管完成了一套全面的实验来研究膜化学,表面性质,机械性质和性能性质在13种商业纳滤和反渗透膜的图案峰高上的作用,但我发现研究的变量与个人的可图案化性之间没有相关性膜。我确实发现,在聚酰胺类分组的膜与通过间苯二甲胺和均苯三甲酰氯的界面聚合制备的膜之间,图案性存在显着差异,图案峰高最大。我进一步发现,用于膜保存的湿润剂(孔填充剂)对膜的可图案化性起作用。用15 wt%的甘油溶液代替膜制造商使用的原始湿润剂后,对于每种类型的膜,图案峰高都接近相似的值。阐明甘油对可图案化作用的测试尚无定论。因此,尽管湿润剂明显有助于膜可图案化,但其原因仍然未知。,我的研究证明了通过改变表面化学性质和表面特征来减少膜生物结垢的能力。我的工作结果有助于我们对膜污染的理解,并可用于开发具有更高抗污性的下一代水处理膜。这样的膜可以预期降低使用膜清洁水的操作成本。

著录项

  • 作者

    Weinman, Steven Thomas.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号