首页> 外文学位 >Developing New Approaches to Faster, High-Spatial Resolution Phosphorus-31 MR Imaging of Bone
【24h】

Developing New Approaches to Faster, High-Spatial Resolution Phosphorus-31 MR Imaging of Bone

机译:开发新方法以更快,高空间分辨率对骨骼进行磷31核磁共振成像

获取原文
获取原文并翻译 | 示例

摘要

Magnetic resonance imaging (MRI) is the leading non-invasive imaging technique of soft tissues on anatomical and millimeter scales. In conventional MRI, hydrogen-1 (1H) in water and liquid fats are detected; the relatively narrow spectra of these signals is the key feature that enables MR imaging with high-spatial resolution (i.e., sub-mm in each dimension). The broad NMR spectra of solids would be much more difficult to use in MRI, and would ordinarily result in a low spatial resolution image. Previously, our lab developed a pulse sequence to effectively narrow the broad spectrum of lines in solids. This sequence, applied to phosphorus-31 (31P) spins in bone, was able to achieve high resolution imaging. Despite this tremendous progress, our approach to MR imaging of solid samples is still signal limited and the imaging times are very long. In this thesis work, I propose using a variation on a solid-state, double-resonance NMR technique to increase the signal of 31P imaging and to be able to do so in a shorter time. This approach uses cross-polarization to resonantly transfer magnetization from a 1H spin bath that is cooler, i.e. more polarized, and more quickly refreshed, to a 31P spin bath. As explained in this thesis work, bone is a poor choice of sample for a cross-polarization experiment. In order to overcome this disadvantage, I developed a new approach, called StepCP, to boost the 31P signal in a stepwise fashion. Using this technique, I demonstrate that the signal to noise ratio using double-resonance in solids can be increased, and that the signal can be attained in fraction of the acquisition times previously used to generate 31P images in bone.
机译:磁共振成像(MRI)是软组织在解剖学和毫米尺度上的领先非侵入性成像技术。在常规MRI中,检测到水和液体脂肪中的氢-1(1H);这些信号的相对较窄的光谱是使MR成像具有高空间分辨率(即每个维度小于1毫米)的关键特征。固体的宽NMR光谱将很难在MRI中使用,并且通常会导致空间分辨率较低的图像。以前,我们的实验室开发了一种脉冲序列,以有效地缩小固体中谱线的范围。该序列应用于骨骼中的磷31(31P)旋转,能够实现高分辨率成像。尽管取得了巨大进展,但我们对固体样品进行MR成像的方法仍然受信号限制,并且成像时间非常长。在这篇论文中,我建议使用固态双共振NMR技术的一种变型来增加31P成像的信号,并能够在更短的时间内做到这一点。该方法使用交叉极化将磁化强度从温度较低(即极化程度更高,更新更快)的1H自旋浴共振转移到31P自旋浴。正如本文工作所解释的那样,对于交叉极化实验而言,骨骼是样品的不佳选择。为了克服此缺点,我开发了一种称为StepCP的新方法,以逐步增强31P信号的能力。使用这种技术,我证明了使用固体双共振可以提高信噪比,并且可以在以前用于在骨骼中生成31P图像的采集时间的几分之一时间内获得信号。

著录项

  • 作者

    Elrington, Stefan A.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Physics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号