首页> 外文学位 >Predicting side-chain dihedral angles of protein cores and beyond: An exploration of the limits of the hard-sphere model
【24h】

Predicting side-chain dihedral angles of protein cores and beyond: An exploration of the limits of the hard-sphere model

机译:预测蛋白质核心及其以外的侧链二面角:探索硬球模型的局限性

获取原文
获取原文并翻译 | 示例

摘要

Existing computational approaches for protein structure modeling and prediction typically involve a multi-term potential energy function, more commonly referred to as a 'force field'. These force fields typically model various physical phenomena, such as solvation effects, electrostatics, hydrogen bonding, and Lennard-Jones interactions. Occasionally, they also include statistical terms derived from observed protein structures. The combination of these physical and statistical components obfuscates the process of determining and understanding the mechanisms that led to a particular prediction. The variability of force field weights and inclusion of differing empirical data further complicates this analysis.;To address this problem, my dissertation examines the extent to which a simplified energy function that includes only stereochemical constraints and repulsive hard-sphere interactions can correctly predict side-chain dihedral angles of amino acids in protein cores and other complexes. This investigation also investigates the limitations of the hard-sphere model and how to surmount them. My research builds upon the pioneering work of the G. N. Ramachandran, who, in 1963, utilized purely repulsive forces to calculate the allowed cp-ip backbone dihedral angles of dipeptide mimetics. In my work, I apply a similar hard-sphere model to predict the dihedral angles of amino acid side-chains by taking into account both intra- and inter-residue steric interactions.;This dissertation presents three major computational studies. I first examine the hard-sphere predictions of single and multiple repacking of residues in protein cores, and demonstrate that steric interactions are the dominant force in specifying side-chain conformations for several hydrophobic residues. However, these interactions alone are not sufficient to recapitulate the side-chain orientations of methionine residues. I address these limitations in the second study by coupling an attractive force with the hard-sphere model. This addition biases side-chains with more than two dihedral angles towards a more compact conformation, and enables us to recapitulate the observed ensemble side-chain dihedral angle distribution of methionine without affecting the results for other residues. Lastly, I analyze the prediction accuracy of the hard-sphere model as a function of relative solvent accessible surface area, a common metric in the field of structural biology. I show that the hard-sphere model generates correct predictions for monomeric, multimeric, and transmembrane residues with relative surface areas of up to 40%. This emphasizes both the generality of my physics-based model and the behavioral similarity of amino acids from different protein regions and protein types.;This work contributes to the forefront of computational protein design by providing an alternate, simplified approach to protein modeling and an understanding of the limitations of the hard-sphere model. With this information, we can gain fundamental insights into protein structure, specifically on the packing of core residues, which endow proteins and protein complexes with stability. By learning the rules for the successful design of protein cores, we can in turn design new proteins and protein-protein interactions for many potential applications including point of care diagnostics, sensors for proteinaceous biological warfare agents, and more effective vaccines.
机译:用于蛋白质结构建模和预测的现有计算方法通常涉及多项势能函数,通常称为“力场”。这些力场通常模拟各种物理现象,例如溶剂化效应,静电,氢键和Lennard-Jones相互作用。有时,它们还包括源自观察到的蛋白质结构的统计术语。这些物理和统计成分的组合使确定和理解导致特定预测的机制的过程变得模糊。力场权重的可变性和包含不同的经验数据进一步使这一分析变得更加复杂。为了解决这个问题,我的论文研究了仅包含立体化学约束和排斥性硬球相互作用的简化能量函数可以正确地预测侧链的程度。蛋白质核心和其他复合物中氨基酸的链二面角。这项研究还研究了硬球模型的局限性以及如何克服它们。我的研究基于G. N. Ramachandran的开拓性工作,他于1963年利用纯粹的排斥力来计算二肽模拟物的cp-ip主链二面角。在我的工作中,我通过考虑残基内部和残基之间的空间相互作用,运用相似的硬球模型来预测氨基酸侧链的二面角。本论文提出了三项主要的计算研究。我首先检查了硬核预测蛋白核中残基的单次和多次重装,并证明了空间相互作用是指定几个疏水性残基侧链构象的主导力。然而,仅这些相互作用不足以概括甲硫氨酸残基的侧链取向。在第二项研究中,我通过将吸引力与硬球模型耦合来解决这些限制。这种添加使具有两个以上二面角的侧链偏向更紧凑的构象,并使我们能够概括观察到的蛋氨酸的整体侧链二面角分布,而不会影响其他残基的结果。最后,我分析了硬球模型的预测精度与相对溶剂可及表面积的关系,该相对溶剂可及表面积是结构生物学领域的常用指标。我表明,硬球模型会针对相对表面积高达40%的单体,多聚体和跨膜残基生成正确的预测。这既强调了我基于物理学的模型的通用性,也强调了来自不同蛋白质区域和蛋白质类型的氨基酸的行为相似性;通过为蛋白质建模和理解提供一种替代的简化方法,这项工作有助于计算蛋白质设计的前沿硬球模型的局限性。有了这些信息,我们就可以获得蛋白质结构的基本见识,特别是在核心残基的堆积方面,这些残基赋予蛋白质和蛋白质复合物以稳定性。通过学习成功设计蛋白质核心的规则,我们可以依次设计出许多潜在应用中的新蛋白质和蛋白质-蛋白质相互作用,包括即时诊断,蛋白质生物战剂传感器和更有效的疫苗。

著录项

  • 作者

    Virrueta, Alejandro.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Biophysics.;Computational physics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号