首页> 外文学位 >Development of polynorbornenes and polypeptides as versatile functional biomaterials
【24h】

Development of polynorbornenes and polypeptides as versatile functional biomaterials

机译:聚降冰片烯和多肽作为通用功能生物材料的开发

获取原文
获取原文并翻译 | 示例

摘要

Polymer chemistry is an essential connection between organic chemistry, chemical biology and materials science. This living world has presented us many examples of the usages of polymers, such as delivery vehicle, recognition unit, support materials, information storage,5 and so on. Scientists have been trying to create synthetic polymers that can mimic such functionalities and bring widespread applications in different fields. For all synthetic polymers, their properties and potential applications are all based on their chemical nature. This is especially true for synthetic polymeric materials for bio-related applications, because of the delicate and complicated working environments and mechanisms of such biomaterials. Consequently, more facile and delicate controls over the polymers' chemical nature are in great demand, and bottom-up strategy for the synthesis of smart polymers have been more common in the recent decades.;In this thesis paper, multiple bottom-up syntheses of useful polymeric materials are recorded. In the first part of the thesis, a new approach to prepare functional organic nanoparticles (ONPs) from linear polymers is described. The nanoparticles were obtained by consecutive ring-opening metathesis polymerization and ring-closing metathesis. This flexible and mild synthesis allowed preparation of organic- and aqueous-soluble particles with controllable size and narrow molecular weight distributions. The use of functional monomer(s) and/or chain-transfer agents had led to controllable synthesis of nanoparticles containing single, dual, or multiple reactive functional groups. Such non-toxic ONPs with many controllable parameters could be used to study the effect of surface functional groups on the cellular uptake of corresponding nanoparticles. In addition, dye-functionalized ONPs could serve as water-soluble fluorophores with highly enhanced photostability. Moreover, other functional materials such as DNAs could be conjugated onto the ONPs, bringing in new hybrid materials with applications. The ONPs and ONP-DNA conjugates could also serve as templates for the synthesis of metal nanoparticles, providing a direct and facile synthetic route for functional metal nanoparticles.;In the second part of this paper, major focus is set on a polymeric approach to enhance the efficacy of toxic r(CUG)n-binding compounds for potential Myotonic Dystrophy Type I (DM1) treatment. Also using a bottom-up living polymerization strategy, cell-penetrating polymers bearing active r(CUG)n binding ligands are prepared. The synthetic polypeptide binder was shown to have excellent performance in both molecular and cell studies, giving much enhanced binding to the toxic RNA. The ligand-polypeptide conjugates could successfully disperse ribonuclear foci caused by r(CUG)n-MBNL1 complex, and could fully reverse the mis-splicing of Insulin receptor (IR) mRNAs in the model cells. In addition, potentially due to the polymer-mediated catalytic degradation, r(CUG)n level in the model cells could be greatly reduce by low concentration treatment of the ligand-bearing polymeric material.
机译:高分子化学是有机化学,化学生物学和材料科学之间必不可少的联系。这个生活世界为我们提供了许多聚合物用法的例子,例如运载工具,识别单元,支持材料,信息存储等5。科学家一直在尝试创建可以模仿此类功能并在不同领域中广泛应用的合成聚合物。对于所有合成聚合物,其性能和潜在应用都基于其化学性质。对于生物相关应用的合成聚合物材料而言,尤其如此,因为这种生物材料的精密和复杂的工作环境以及机理。因此,迫切需要对聚合物的化学性质进行更简便,更精细的控制,并且在近几十年中,自下而上的合成智能聚合物的策略越来越普遍。记录有用的聚合物材料。在论文的第一部分中,描述了一种由线性聚合物制备功能性有机纳米粒子的新方法。通过连续的开环复分解聚合和闭环复分解获得纳米颗粒。这种灵活而温和的合成方法可以制备尺寸可控且分子量分布窄的有机和水溶性颗粒。功能性单体和/或链转移剂的使用已导致可控地合成包含单个,双重或多个反应性官能团的纳米粒子。具有许多可控参数的此类无毒ONP可用于研究表面官能团对相应纳米颗粒细胞摄取的影响。此外,染料官能化的ONP可以用作水溶性荧光团,具有高度增强的光稳定性。此外,其他功能性材料(如DNA)也可以结合到ONP上,从而带来了新的应用杂化材料。 ONP和ONP-DNA结合物也可以用作金属纳米粒子合成的模板,为功能性金属纳米粒子提供直接而便捷的合成途径。;在本文的第二部分中,重点主要放在聚合方法上,以增强有毒r(CUG)n结合化合物对潜在的I型强直性营养不良(DM1)治疗的功效。还使用自下而上的活性聚合策略,制备了带有活性r(CUG)n结合配体的可穿透细胞的聚合物。合成的多肽结合剂在分子和细胞研究中均显示出优异的性能,与毒性RNA的结合大大增强。配体-多肽共轭物可以成功地分散由r(CUG)n-MBNL1复合物引起的核仁灶,并且可以完全逆转模型细胞中胰岛素受体(IR)mRNA的错接。另外,潜在地由于聚合物介导的催化降解,可以通过低浓度处理带有配体的聚合物材料来大大降低模型细胞中的r(CUG)n水平。

著录项

  • 作者

    Bai, Yugang.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Polymer chemistry.;Molecular biology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号