首页> 外文学位 >Matrix Property-Controlled Stem Cell Differentiation for Cardiac and Skeletal Tissue Regeneration
【24h】

Matrix Property-Controlled Stem Cell Differentiation for Cardiac and Skeletal Tissue Regeneration

机译:用于心脏和骨骼组织再生的基质特性控制的干细胞分化

获取原文
获取原文并翻译 | 示例

摘要

When ischemia, caused by diseases such as myocardial infarction (MI) or atherosclerotic peripheral artery disease (PAD), happens in myocardium or skeletal muscles, the depletion of oxygen and nutrients can cause the immediate death of muscle cells, the formation of stiff scar tissues, followed by the mechanical and functional properties loss of heart/skeletal muscles. In order to treat these diseases, it's necessary to: 1). fast re-establish the blood flow of ischemic tissues; 2). fully regenerate the cardiac/skeletal muscles to restore the tissue functions.;One of the widely used approaches to reach these treatment goals is stem cell transplantation. By using novel biomaterial-based scaffolds (gels, foams or fibrous networks), stem cells may be delivered into the injured area, differentiate into cardiomyocytes/myofibers and help the regeneration of local tissues. In the first part of this work, physical induction approaches for stem cell differentiation is presented. Using an electrospinning method, fibrous scaffolds based on hydrogel and polyurethane (PU) were fabricated and cardiac differentiation of cardio-sphere derived cells (CDCs) was successfully induced through the control of scaffold mechanical and morphological properties (fiber diameter, density, alignment, single fiber modulus and scaffold macro modulus). In a hydrogel system, the matrix modulus was successfully decoupled from the chemical structure, composition and water content properties, and a matrix tensile modulus of around 20kPa was found to better induce the myogenic differentiation of mesenchymal stem cells (MSCs) cultured under normal condition.;In the other hand, due to the harsh local environment caused by ischemia, the transplanted cells usually have low survival and differentiation rates. To solve this problem, cells were delivered in hydrogels with angiogenesis factor basic fibroblast growth factor (bFGF) or oxygen release microspheres (ORM) to conquer the local low oxygen and low nutrient conditions. The second part of this work focuses on the application of this delivery system in vivo using a mice hindlimb ischemia model. Results showed that MSC survival and myogenic differentiation rates were significantly improved both in vitro and in vivo with the delivery of bFGF or ORM under ischemic condition. In addition, a dramatic increase of muscle fiber regeneration, blood flow recovery as well as the mechanical/functional (muscle contractility, fatigue resistance and mice running ability) properties was observed. These results indicate the great potential of this cell-gel-biomolecule system in the treatment of muscle regeneration.;To better understand how the matrix modulus affects the stem cell differentiation, we developed a novel approach using digital image correlation (DIC) and finite element modeling (FEM) to calculate the cell-generated tractions. This is presented in the third part of this work, and our results demonstrated that MSCs with higher myogenic differentiation exerted larger tractions to their surrounding matrix.
机译:当由心肌梗塞(MI)或动脉粥样硬化性外周动脉疾病(PAD)等疾病引起的局部缺血在心肌或骨骼肌中发生时,氧气和营养物质的消耗会导致肌肉细胞立即死亡,形成坚硬的疤痕组织,其次是心脏/骨骼肌的机械和功能特性丧失。为了治疗这些疾病,必须:1)。快速重建缺血组织的血流; 2)。充分再生心肌/骨骼肌以恢复组织功能。;实现这些治疗目标的广泛使用的方法之一是干细胞移植。通过使用新型的基于生物材料的支架(凝胶,泡沫或纤维网络),干细胞可被递送至受伤区域,分化为心肌细胞/肌纤维并帮助局部组织再生。在这项工作的第一部分,介绍了干细胞分化的物理诱导方法。使用静电纺丝方法,制造了基于水凝胶和聚氨酯(PU)的纤维支架,并通过控制支架的机械和形态特性(纤维直径,密度,排列,单纤维模量和支架宏观模量)。在水凝胶系统中,成功地将基质模量与化学结构,组成和含水量性质分离,发现大约20kPa的基质拉伸模量可以更好地诱导正常条件下培养的间充质干细胞(MSC)的肌源性分化。另一方面,由于局部缺血引起的恶劣环境,移植的细胞通常存活和分化率低。为了解决这个问题,将细胞与血管生成因子碱性成纤维细胞生长因子(bFGF)或氧气释放微球(ORM)一起放入水凝胶中,以克服局部低氧和低营养条件。这项工作的第二部分着重于使用小鼠后肢缺血模型在体内应用这种递送系统。结果显示,在缺血条件下,通过bFGF或ORM的递送,MSC的存活和成肌分化率均在体外和体内得到了显着提高。此外,观察到肌肉纤维再生,血流恢复以及机械/功能(肌肉收缩性,抗疲劳性和小鼠奔跑能力)性能显着提高。这些结果表明该细胞凝胶生物分子系统在治疗肌肉再生方面具有巨大的潜力。为了更好地了解基质模量如何影响干细胞的分化,我们开发了一种使用数字图像相关(DIC)和有限元的新方法建模(FEM)以计算单元生成的牵引力。这在本工作的第三部分中进行了介绍,我们的结果表明,具有较高成肌分化能力的MSC对周围基质施加了更大的牵引力。

著录项

  • 作者

    Xu, Yanyi.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 312 p.
  • 总页数 312
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号