首页> 外文学位 >Metal-semiconductor Compound Contacts to Nanoscale Transistors
【24h】

Metal-semiconductor Compound Contacts to Nanoscale Transistors

机译:金属-半导体化合物与纳米级晶体管的接触

获取原文
获取原文并翻译 | 示例

摘要

Semiconductor nanowires (NWs) and Fin structures are promising building blocks for next generation ultrascaled devices for electronic and optoelectronic applications. The detailed understanding of and control over the phase transformation that accompanies the formation of their compound contacts for lithography-free self-aligned gate design can accelerate the development of these ultra-scaled devices. Numerous aspects of nanoscale metallization technology were shown to exhibit significantly different behavior from their bulk counterparts. And up to now, the majority of the studies that explored nanoscale contact metallurgy focused on nanostructures of elemental semiconductors, i.e., Si and Ge NWs, and detailed contact reactions have not been uncovered in III--V NW channels or heterostructured NW channels at atomic resolution.;In the first and the major part of this thesis, I will focus on the narrow band gap, high electron mobility III--V semiconductor, InGaAs, motivated by its potential in sub-10 nm metal-oxide-semiconductor field-effect transistors (MOSFETs). In chapter 2, we reported the first study on the solid-state reaction between Ni and In0.53Ga0.47As nanochannels to reveal the reaction kinetics, formed crystal structure, and interfacial properties. In chapter 3 and 4, we developed a deeper understanding of this contact metallization process by utilizing the in-situ heating transmission electron microscopy (TEM) technique, and observed at atomic resolution the detailed ledge formation and movement behaviors in both the NW cross-section and along the NW channel.;In the second part, I will use the Ge/Si core/shell NW as a model system to talk about the compound contact formation in semiconductor heterostructures. In chapter 5, we managed to control the synchronous core/shell interface during the solid-state reactions between Ni and Ge/Si core/shell nanowires, and measured the strain evolution in ultra-short channels using in-situ TEM. These elevated compressive strains are expected to result in a non-homogeneous energy band structure in Ge/Si core/shell NWs below 10 nm and potentially benefit their transistor performance.;Finally, as appearing in chapter 6, I will introduce the ongoing electrical measurements of contact resistance for InGaAs transistors, and adapt the solid-phase-regrowth method to future reduce the contact resistance with locally introduced dopants. I will also talk about the collaborated work in fabricating the AlGaN/GaN Fin MOS-HEMTs for intrinsically linear power amplification devices.
机译:半导体纳米线(NWs)和Fin结构是用于电子和光电应用的下一代超大规模器件的有前途的构建基块。对于无光刻自对准门设计的复合触点的形成,对相变的详细了解和控制,可以加速这些超大规模器件的开发。纳米级金属化技术的许多方面显示出与它们的本体相比具有明显不同的行为。到目前为止,大多数探索纳米级接触冶金的研究都集中在元素半导体的纳米结构上,即Si和Ge NWs,并且在原子的III-V NW通道或异质结构NW通道中还没有发现详细的接触反应。在本论文的第一部分和主要部分中,我将重点介绍窄带隙,高电子迁移率III-V半导体InGaAs,其受10nm以下金属氧化物半导体场中的电势的激励。效果晶体管(MOSFET)。在第二章中,我们首次报道了Ni与In0.53Ga0.47As纳米通道之间的固相反应,以揭示反应动力学,形成的晶体结构和界面性质。在第3章和第4章中,我们利用原位热传输电子显微镜(TEM)技术对这种接触金属化过程进行了更深入的了解,并在原子分辨率下观察了NW截面中详细的壁架形成和移动行为。在第二部分中,我将使用Ge / Si核/壳NW作为模型系统来讨论半导体异质结构中的化合物接触形成。在第5章中,我们设法控制了Ni和Ge / Si核/壳纳米线之间的固态反应期间的同步核/壳界面,并使用原位TEM测量了超短通道中的应变演化。预计这些升高的压缩应变将导致Ge / Si核/壳NW中低于10 nm的非均匀能带结构,并可能有益于其晶体管性能。最后,如第6章所述,我将介绍正在进行的电气测量InGaAs晶体管的接触电阻,并采用固相再生法来将来降低与局部引入的掺杂剂的接触电阻。我还将讨论在制造用于本征线性功率放大器件的AlGaN / GaN Fin MOS-HEMT方面的合作工作。

著录项

  • 作者

    Chen, Renjie.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号