首页> 外文学位 >Design of Biomimetically Inspired Hydroxyapatite-gelatin Based Composite for Bone Scaffold Application
【24h】

Design of Biomimetically Inspired Hydroxyapatite-gelatin Based Composite for Bone Scaffold Application

机译:仿生启发式羟基磷灰石-明胶基骨支架复合材料的设计

获取原文
获取原文并翻译 | 示例

摘要

Bone tissue engineering (BTE) requires a sturdy biomimetic scaffold for restoration of large bone defects. This dissertation describes the progress made in improving our previously developed Gemosil composite consisting of Hydroxyapatite-Gelatin (HAp-Gel) with silane cross-linker as a potential scaffold. Our initial goal was to further improve the mechanical strength of the composite. We first successfully doubled the mechanical strength of the composite through adding selected co-solvent during the sol-gel process. We further experimentally confirmed that the improvement of the mechanical strength is due to the improved morphology of both the silane network and the Gemosil composite. Unfortunately, the scaffold fabricated from this composite (even with the newly optimized processing condition) underwent rapid degradation in water, and rapidly lost its mechanical strength.;To mitigate this degradation issue, we attempted to incorporate a cross-linkable polymer into the Gemosil composite, aiming to further increase mechanical strength of the Gemosil composite with an additional polymeric network (i.e., reinforcing network). Specifically, we synthesized a new biocompatible and biodegradable copolymer, poly(L-lactide-co-propargyl carbonate) with pendent catechol functional groups. These catechol functional groups served as "liaison" molecules to help to improve the interfacial adhesion between the polymer network and the various components of the Gemosil. We demonstrated that through incorporating this copolymer together with mussel-inspired dopamine into Gemosil system, the compressive strength of the scaffold could be improved by 20% under aqueous condition.;Finally, despite the impressive adhesive and coating property of dopamine/polydopamine demonstrated by us and others, polydopamine (PDA) has its own limitations. For instance, PDA's black color is not favored for clinical applications and its polymerization mechanism is still elusive. We synthesized a series of dopamine analogues with different alkyl chain lengths between the catechol and the amine. We found all of these new dopamine analogues were able to polymerize. Through studying the adhesive and coating ability of these new dopamine analogues, together with systems having catechol and selected alkyl amines (unbound to catechol), we showed that the covalent linkage between the catechol and the amine via an alkyl chain is not required to show the adhesive property; however, this covalent link is crucial to achieve the impressive coating property of dopamine and its analogs. Our findings offer new insights in designing mussel-inspired materials for future BTE application, and further mechanistic understanding of the polymerization of dopamine and these new dopamine analogues.
机译:骨组织工程(BTE)需要坚固的仿生支架来修复大的骨缺损。这篇论文描述了改进我们以前开发的由羟基磷灰石-明胶(HAp-Gel)和硅烷交联剂作为潜在支架的Gemosil复合材料的进展。我们最初的目标是进一步提高复合材料的机械强度。我们首先通过在溶胶-凝胶过程中添加选择的助溶剂,成功地将复合材料的机械强度提高了一倍。我们进一步通过实验证实,机械强度的提高归因于硅烷网络和Gemosil复合材料的形态改善。不幸的是,由这种复合材料制成的脚手架(即使采用最新优化的加工条件)在水中迅速降解,并迅速失去其机械强度。为了减轻这种降解问题,我们尝试将可交联聚合物掺入Gemosil复合材料中,目的是通过附加的聚合物网络(即增强网络)进一步提高Gemosil复合材料的机械强度。具体来说,我们合成了一种新的具有生物相容性且可生物降解的共聚物,即带有邻苯二酚官能团的聚(L-丙交酯-碳酸炔丙酯)。这些邻苯二酚官能团充当“联络”分子,以帮助改善聚合物网络与Gemosil各种组分之间的界面粘合力。我们证明了通过将这种共聚物与贻贝启发的多巴胺一起掺入Gemosil系统中,在水性条件下可以将支架的抗压强度提高20%。最后,尽管我们证明了多巴胺/聚多巴胺具有令人印象深刻的粘合性和涂层性聚多巴胺(PDA)有其自身的局限性。例如,PDA的黑色不适用于临床,其聚合机理仍然难以捉摸。我们合成了一系列在邻苯二酚和胺之间具有不同烷基链长度的多巴胺类似物。我们发现所有这些新的多巴胺类似物都能聚合。通过研究这些新的多巴胺类似物以及具有邻苯二酚和选定的烷基胺(未与邻苯二酚结合)的体系的粘合力和包覆能力,我们表明邻苯二酚和胺之间通过烷基链的共价键不需要显示粘合性能;然而,这种共价键对于获得多巴胺及其类似物令人印象深刻的涂层性能至关重要。我们的发现提供了为未来BTE应用设计以贻贝为灵感的材料的新见识,并进一步了解了多巴胺和这些新的多巴胺类似物的聚合机理。

著录项

  • 作者

    Hu, Huamin.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Polymer chemistry.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:09

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号