首页> 外文学位 >Microrheology and heterogeneity in biological fluids: Approaches, models and applications.
【24h】

Microrheology and heterogeneity in biological fluids: Approaches, models and applications.

机译:生物流体中的微流变学和异质性:方法,模型和应用。

获取原文
获取原文并翻译 | 示例

摘要

Fluids play an important role in a wide range of biological processes. They facilitate cellular activities, protect us from infection and propagate nutrients throughout the body, to name a few. In each case, the properties of the fluid are finely tuned to the task at hand, and understanding those properties can afford a deeper understanding of the underlying biology. Furthermore, knowing how disease or environmental factors alter the properties of these fluids can provide a means to interpret, and forecast, downstream deleterious effects.;To this end, microrheology is an increasingly popular means of investigating biological fluids. This technique, whereby tracer particles are embedded in the fluid of interest and their diffusive movements are used to infer the viscous and elastic moduli of the surrounding fluid, offers insight into properties of the fluid at a spatial and temporal resolution unmatched by traditional macrorheology approaches.;Despite its benefits, the wider application of microrheology has been limited by the presence of two, frequently encountered, phenomena: the existence of an active driving force coupled to the stochastic movement of the tracer particles, and the presence of spatial, or temporal, heterogeneity in the fluid under investigation. This work proposes best practices for addressing each of these phenomena and demonstrates how they may be coupled to diffusion models to more accurately describe, and predict, the movement of micro- and nano-scale particles through biological fluids. We apply the methodology developed herein to the analysis of bronchoalveolar lavage fluid from a pediatric cystic fibrosis cohort as part of an ongoing effort to characterize pulmonary manifestations of the disease.
机译:流体在广泛的生物过程中起着重要的作用。它们促进细胞活动,保护我们免受感染并在体内传播营养,仅举几例。在每种情况下,流体的特性都可以根据手头的任务进行微调,并且了解这些特性可以对基础生物学有更深入的了解。此外,了解疾病或环境因素如何改变这些液体的特性可以提供解释和预测下游有害作用的方法。为此,微流变学是研究生物液体的一种越来越流行的方法。这项技术将示踪剂颗粒嵌入感兴趣的流体中,并利用它们的扩散运动来推断周围流体的粘弹性模量,从而可以以传统的宏观流变方法无法比拟的空间和时间分辨率洞察流体的性质。 ;尽管有其好处,但微观流变学的广泛应用受到以下两种经常出现的现象的限制:存在与示踪剂颗粒随机运动相关的主动驱动力,以及存在空间或时间上的,研究流体的异质性。这项工作提出了解决每种现象的最佳实践,并展示了它们如何与扩散模型耦合,以更准确地描述和预测微尺度和纳米尺度的粒子通过生物流体的运动。我们将本文开发的方法学应用于分析儿科囊性纤维化人群的支气管肺泡灌洗液,以此作为表征该疾病肺部表现的一项持续性工作。

著录项

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Applied mathematics.;Biophysics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号