首页> 外文学位 >Application of molecular modeling in the noncovalent dispersion of carbon nanomaterials.
【24h】

Application of molecular modeling in the noncovalent dispersion of carbon nanomaterials.

机译:分子建模在碳纳米材料非共价分散中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Three molecular modeling studies of carbon nanomaterial dispersions are presented in this dissertation, with an emphasis on illustrating how effective these theoretical techniques are in providing insight on the selection of dispersion additives.The first project (Chapter II) includes theoretical studies on the dispersion of single-walled carbon nanotubes (SWNTs) via non-covalent attachment of dispersing polymers. This effort involved the investigation of the binding affinities between specific polymers and SWNTs. Dispersion of SWNTs has been of great interest for many years due to numerous applications promised by their unique combination of electronic, mechanical, chemical, and thermal properties. SWNTs are incompatible with most solvents and polymers, which results in poor dispersion of these compounds in the polymer matrix. Van der Waals attraction among tubes over a large surface area leads to significant agglomeration, thus preventing efficient transfer of their superior properties to the matrix. Improving our fundamental understanding of the interactions of polymer-SWNT interactions at the molecular level is needed for the development of new materials based on SWNTs. Structures of SWNT-polymer complexes were optimized using molecular mechanics, employing COMPASS forcefield. The optimized complexes enabled a morphological analysis of the arrangement of polymer strands on the SWNT surface and calculations of the intermolecular interaction energies. Our calculations identified a strong binding affinity between SWNTs and conjugated polymers containing heteroatoms. The inclusion of solvent effects in the theoretical calculations produced results matching experimental observations from laboratory dispersion studies.The second project (Chapter III) consists of computational studies on the potential dispersion of metallic nitride fullerenes (MNFs), e.g. Sc 3N C80, using a solvent-compatible complexing agent. MNFs have a unique hollow-ball shape built from 12 carbon pentagons and 30 hexagons, possessing truncated icosahedra symmetry and encapsulating a trimetallic-nitride cluster at the core of the cage. This unique structure results in its distinctive physical and chemical properties. The ability of MNFs to bring a functional metal to polymeric nano-composite systems opens up the possibility for extraordinary properties, e.g. magnetic, electroactive, and radioactive properties, which hold great promise for medical, optical, and electronic applications. Incorporation of MNF materials in a polymer support material involves the uniform dispersion of MNFs in the matrix. Due to the all-carbon cage, MNFs are very hydrophobic materials and possess minimal solubility in common organic solvents (mg/mL scale), monomers, and polymers, complicating the dispersion process. The ability to disperse MNFs in polymers is paramount to realizing the potential of these materials in future commercial applications. MNFs are difficult to chemically functionalize without altering the desirable intrinsic properties therefore, an important aspect of this work is the focus on potential non-covalent dispersion techniques using co-additives, which is a versatile, nondamaging chemistry and preserves all of the intrinsic properties of MNF.In a third project (Chapter IV), interactions of naphthenic acids with crude oil asphaltenes were examined thereby contributing significantly to the volume of knowledge available describing the affinities of these acidic and basic components of crude oil. In this project a molecular mechanical analysis with an accepted structure of asphaltene was performed, and intermolecular interactions between asphaltene and naphthenic acids dispersants were calculated. The geometries of the asphaltene-naphthenic acid complexes were optimized and five resultant regioisomers of the asphaltene-naphthenic acid complex were analyzed. The molecular mechanical calculations suggest that the intermolecular interactions between asphaltene and naphthenic acids consist of vdW and electrostatic interactions. (Abstract shortened by UMI.)
机译:本文对碳纳米材料分散体进行了三项分子建模研究,重点说明了这些理论技术在分散添加剂选择方面的见解。第一个项目(第二章)包括对单种分散体的理论研究。分散聚合物的非共价结合形成壁碳纳米管(SWNT)。这项工作涉及对特定聚合物和单壁碳纳米管之间的结合亲和力的研究。多年来,SWNT的分散引起人们极大的兴趣,这是由于其电子,机械,化学和热学性质的独特结合所带来的众多应用。 SWNT与大多数溶剂和聚合物不相容,这导致这些化合物在聚合物基质中的分散性较差。管之间的范德华力吸引在较大的表面积上导致显着的团聚,从而阻止了其优良性能有效转移到基体上。为了开发基于SWNT的新材料,需要在分子水平上提高对聚合物与SWNT相互作用的基本理解。利用COMPASS力场,利用分子力学优化了SWNT-聚合物复合物的结构。优化的配合物使得能够对SWNT表面上聚合物链的排列进行形态分析,并计算分子间相互作用能。我们的计算确定了SWNT与含有杂原子的共轭聚合物之间的强结合亲和力。在理论计算中纳入溶剂效应产生的结果与实验室分散研究的实验观察结果相符。第二个项目(第三章)包括对金属氮化物富勒烯(MNFs)的潜在分散性的计算研究。 Sc 3N C80,使用与溶剂相容的络合剂。 MNF具有由12个碳五边形和30个六边形构成的独特空心球形状,具有截短的二十面体对称性,并在笼子的核心处封装了三金属氮化物簇。这种独特的结构使其具有独特的物理和化学特性。 MNF将功能性金属带入聚合物纳米复合材料系统的能力开辟了非凡性能的可能性,例如磁性,电活性和放射性性质,在医学,光学和电子应用中具有广阔的前景。在聚合物载体材料中掺入MNF材料涉及MNF在基质中的均匀分散。由于全碳笼罩,MNFs是非常疏水的材料,并且在常见的有机溶剂(mg / mL规模),单体和聚合物中具有最小的溶解度,这使分散过程复杂化。将MNF分散在聚合物中的能力对于实现这些材料在未来商业应用中的潜力至关重要。 MNF很难在不改变所需内在特性的情况下进行化学功能化,因此,这项工作的重要方面是着眼于使用共添加剂的潜在非共价分散技术,该技术是一种通用的,无损害的化学性质,并保留了MNF的所有内在特性。 MNF。在第三个项目(第四章)中,研究了环烷酸与原油沥青质的相互作用,从而极大地增加了描述这些酸性和碱性原油成分亲和力的可用知识量。在该项目中,进行了具有可接受的沥青质结构的分子力学分析,并计算了沥青质与环烷酸分散剂之间的分子间相互作用。优化了沥青质-环烷酸配合物的几何结构,并分析了沥青质-环烷酸配合物的五种区域异构体。分子力学计算表明,沥青质和环烷酸之间的分子间相互作用包括vdW和静电相互作用。 (摘要由UMI缩短。)

著录项

  • 作者

    Madasu, Praveen Kumar.;

  • 作者单位

    The University of Southern Mississippi.;

  • 授予单位 The University of Southern Mississippi.;
  • 学科 Chemistry Analytical.Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号