首页> 外文学位 >Catalytic Olefin Polymerization and Metathesis: Molecular Structure-Activity Relationships
【24h】

Catalytic Olefin Polymerization and Metathesis: Molecular Structure-Activity Relationships

机译:催化烯烃聚合和复分解:分子结构-活性关系。

获取原文
获取原文并翻译 | 示例

摘要

Olefin chemistry has a long and significant history in the catalysis literature. The polymerization and metathesis reactions were discovered around the same time in the early 1950s. The polyolefin industry has now grown to a multibillion dollar industry. The three main classes of olefin polymerization catalysts are (i) Phillips-type catalysts (CrOx/SiO2); (ii) Ziegler-Natta catalysts (transition metal compound with an activator); and (iii) single-site homogeneous catalysts or supported homogeneous catalysts (i.e. metallocene).;The Phillips-type heterogeneous supported CrOx/SiO2 catalysts are one of the most widely studied catalysts. It was discovered in the early 1950s at Phillips Petroleum Company, when J.P. Hogan and R.L. Banks determined that ethylene could be converted to high-density polyethylene (HDPE) by supported Cr/SiO2. This catalyst is now responsible for over half of the production of HDPE sold globally. The reason for the widespread use of the Phillips catalyst lies in its ability to synthesize over 50 different types of HDPE and linear low-density polyethylene (LLDPE), without the use of additional activators, which simplifies the catalyst preparation and production process. The process is also important because HDPE is produced at lower temperatures (65--180 °C) and atmospheric pressure.;A supported CrOx/SiO 2 catalyst was synthesized and characterized using time-resolved operando and in situ molecular spectroscopy both before and during ethylene polymerization reaction conditions to investigate the structure-activity relationships for this important industrial catalytic reaction. Metal oxides (AlOx, TiOx, and ZrOx) were used as promoter oxides. A combination of spectroscopic techniques (Raman, UV-vis, XAS, DRIFTS, and TPSR) during ethylene polymerization allows for the first time to monitor the molecular events taking place during activation of supported CrOxMOx/SiO2 catalysts by ethylene to establish the structure-activity relationships for this reaction. During reaction, the initial surface Cr+6Ox sites reduce to Cr+3 sites to form Cr-(CH2)2CH=CH 2 and Cr-CH=CH2 reaction intermediates, whose activities depend on the promoter oxide (ZrOx ~ TiOx > > CrO x ~ AlOx).;Olefin metathesis is also quite significant in industry and was commercialized in the late 1960s to produce ethylene and 2-butene from propylene in the Phillips Triolefin Process. There is a current global propylene shortage caused by the shift to lighter feedstocks derived from shale gas fracking, and due to the complete reversibility of the metathesis reaction, the reverse reaction can be used to counteract the propylene shortage. Heterogeneous supported MoOx/Al2O3catalysts are one type of commercial catalyst employed, used in industrial processes such as the Shell Higher Olefin Process (SHOP) and operate between room temperature and ~200 °C.;Supported MoOx/Al2O3 catalysts were synthesized and characterized with in situ Raman, UV-vis, DRIFTS, and TPSR, both before and during propylene metathesis reaction conditions. Three distinct MoO x species on the Al2O3 support were identified: isolated surface dioxo (O=)2MoO2, anchored to the basic HO-micro1-AlIV sites (< 1 Mo atom/nm 2, oligomeric surface mono-oxo O=MoO4/5 anchored to more acidic HO-micro1-Al V/VIsites (1--4.6 Mo atoms/nm 2), and crystalline MoO3 nanoparticles also present above monolayer coverage (> 4.6 Mo atoms/nm 2). The surface oligomeric mono-oxo O=MoO4/5 species easily activate at mild temperatures 25--200 °C while the isolated surface dioxo (O=)2MoO2 species require very high temperatures for activation (> 400 °C). The crystalline MoO3 nanoparticles decrease the number of accessible activated surface MoOx sites by their physical blocking. For the first time, the structure-reactivity relationship is established for olefin metathesis by supported MoOx/Al2O3 catalysts and demonstrates the significant role that the anchoring surface hydroxyl sites on alumina have on the reactivity of surface MoOx species.
机译:烯烃化学在催化文献中有着悠久而重要的历史。在1950年代初期的大约同一时间发现了聚合反应和易位反应。聚烯烃工业现已发展到数十亿美元的产业。烯烃聚合催化剂的三大类是:(i)Phillips型催化剂(CrOx / SiO2); (ii)齐格勒-纳塔催化剂(带有活化剂的过渡金属化合物); (3)单中心均相催化剂或负载均相催化剂(即茂金属)。Phillips型多相负载CrOx / SiO2催化剂是研究最广泛的催化剂之一。它是在1950年代初期在Phillips石油公司发现的,当时J.P. Hogan和R.L. Banks确定可以通过负载的Cr / SiO2将乙烯转化为高密度聚乙烯(HDPE)。现在,这种催化剂占了全球销售的HDPE产量的一半以上。菲利普斯催化剂广泛使用的原因在于它能够合成50多种不同类型的HDPE和线性低密度聚乙烯(LLDPE),而无需使用其他活化剂,从而简化了催化剂的制备和生产过程。该工艺也很重要,因为HDPE是在较低的温度(65--180°C)和大气压下生产的;合成了负载型CrOx / SiO 2催化剂,并使用了时间分辨操作和原位分子光谱对其进行了表征。乙烯聚合反应条件来研究这种重要的工业催化反应的构效关系。金属氧化物(AlOx,TiOx和ZrOx)用作助催化剂。在乙烯聚合过程中结合使用光谱技术(拉曼光谱,紫外可见光谱,XAS,DRIFTS和TPSR),首次可以监测乙烯活化负载的CrOxMOx / SiO2催化剂过程中发生的分子事件,从而确定结构活性反应的关系。在反应过程中,初始表面Cr + 6Ox位点还原为Cr + 3位点,形成Cr-(CH2)2CH = CH 2和Cr-CH = CH2反应中间体,其活性取决于助催化剂氧化物(ZrOx〜TiOx CrO烯烃复分解在工业上也很重要,并在1960年代后期商业化以通过Phillips三烯烃工艺从丙烯生产乙烯和2-丁烯。当前,由于页岩气压裂法转向较轻的原料,导致全球丙烯短缺,并且由于复分解反应的完全可逆性,该逆反应可用于抵消丙烯短缺。非均相负载型MoOx / Al2O3催化剂是一种商业催化剂,用于壳牌高级烯烃工艺(SHOP)等工业过程中,并在室温至约200°C的温度范围内运行;合成了负载型MoOx / Al2O3催化剂并对其进行了表征。丙烯复分解反应条件之前和期间的原位拉曼光谱,UV-vis,DRIFTS和TPSR。在Al2O3载体上鉴定出三种不同的MoO x种类:分离的表面二氧杂(O =)2MoO2,锚定在基本HO-micro1-AlIV位点(<1 Mo原子/ nm 2,低聚表面单氧O = MoO4 / 5固定在酸性更高的HO-micro1-Al V / VI位点(1 --- 4.6 Mo原子/ nm 2)上,结晶MoO3纳米粒子也存在于单层覆盖率之上(> 4.6 Mo原子/ nm 2)。 = MoO4 / 5物种在25--200°C的温和温度下很容易活化,而孤立的表面二氧(O =)2MoO2物种则需要非常高的活化温度(> 400°C)。结晶的MoO3纳米颗粒会减少可及的活化数量首次通过负载的MoOx / Al2O3催化剂建立了烯烃复分解的结构反应性关系,并首次证明了氧化铝上的锚固表面羟基对表面MoOx物种的反应性具有重要作用。

著录项

  • 作者

    Chakrabarti, Anisha.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Chemical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 309 p.
  • 总页数 309
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号