首页> 外文学位 >The role of arc in regulating spine morphology and neural network stability in vivo.
【24h】

The role of arc in regulating spine morphology and neural network stability in vivo.

机译:电弧在体内调节脊柱形态和神经网络稳定性的作用。

获取原文
获取原文并翻译 | 示例

摘要

The understanding of human memory is one of the greatest challenges facing neuroscience today. The brain's extraordinary ability to integrate information and appropriately adapt in response to various stimuli is at the core of learning and memory. At a cellular and molecular level, learning and memory relies on a neuron's ability to facilitate activity-dependent changes in synaptic efficacy. In order to better understand the mechanism behind such changes, we investigate the function of Arc, an immediate-early gene essential for both long-term and homeostatic plasticity. We find that through AMPA receptor endocytosis, Arc expression modulates spine morphology to favor more plastic thin spines and filopodia. Thus, Arc expression simultaneously reduces synaptic efficacy through AMPA receptor endocytosis while increasing structural plasticity by favoring thin spines. Supporting this, we find that loss of Arc in vivo leads to a decrease in the proportion of thin spines as well as neural network hyperexcitability. Given Arc's role in spine morphology we also investigate possible actin-regulating Arc-binding partners. We find that Arc directly binds to Wave3, an actin-nucleating factor, in neurons. We further demonstrate that reduction of Wave3 expression leads a marked decrease in primary dendrite length. In mature neurons, reduction of Wave3 results in decreased spine density and increased filopodia. Finally, Arc expression partially rescued these reductions in primary dendrite length and spine density, supporting a functional role for the Arc-Wave3 interaction. Thus, our investigations of Arc and Wave3 have contributed to the understanding of synaptic plasticity, and suggest new links between synaptic efficacy, structural plasticity, homeostasis and memory.
机译:对人类记忆的理解是当今神经科学面临的最大挑战之一。学习和记忆的核心是大脑非凡的能力,可以整合信息并能够对各种刺激做出适当的适应。在细胞和分子水平上,学习和记忆依赖于神经元促进突触功效中活动依赖性变化的能力。为了更好地了解此类变化的机制,我们研究了Arc的功能,Arc是长期和体内可塑性必不可少的早期基因。我们发现,通过AMPA受体的内吞作用,Arc表达可调节脊柱形态,从而有利于更多的塑料细刺和丝状伪足。因此,Arc表达同时通过AMPA受体胞吞作用降低了突触效力,同时通过偏爱细刺增加了结构可塑性。支持这一点,我们发现体内弧的丢失导致细刺的比例以及神经网络的过度兴奋性降低。考虑到Arc在脊柱形态中的作用,我们还研究了可能的肌动蛋白调节Arc结合伴侣。我们发现Arc直接与神经元中的肌动蛋白成核因子Wave3结合。我们进一步证明,Wave3表达的减少导致初级树突长度的明显减少。在成熟的神经元中,Wave3的减少导致脊柱密度降低和丝状伪足增加。最后,Arc表达式部分挽救了原始枝晶长度和书脊密度的减少,从而支持了Arc-Wave3交互作用的功能性作用。因此,我们对Arc和Wave3的研究有助于理解突触可塑性,并提出了突触功效,结构可塑性,体内平衡和记忆之间的新联系。

著录项

  • 作者

    Peebles, Carol Lee.;

  • 作者单位

    University of California, San Francisco.;

  • 授予单位 University of California, San Francisco.;
  • 学科 Biology Molecular.;Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号