首页> 外文学位 >Synthesis of Colloidal Semiconductor Quantum Dots: Gradient Alloy Core and Tunable Surface Composition.
【24h】

Synthesis of Colloidal Semiconductor Quantum Dots: Gradient Alloy Core and Tunable Surface Composition.

机译:胶体半导体量子点的合成:梯度合金核和可调表面组成。

获取原文
获取原文并翻译 | 示例

摘要

Being versatile nano-materials, quantum dots (QDs) show their value by taking advantage of the unique optical properties and size-tunable emission and are widely applied in many fields. Controllable and reproducible methods as well as reactive precursors are much in demand to render quantum dots better controlled materials with designable properties in potential applications.;The photoluminescence intermittency (blinking) in a single QD is a distinct nature of the material and has become a major limit when applying QDs in biological labeling. One possible reason for blinking phenomena in single nanocrystal is Auger recombination (non-radiative decay with presence of trion). The gradient structure of alloy core (and gradually changed potential wall) may provide a soft confinement to electrons and holes, making Auger recombination inefficient. In this thesis, two synthetic methods were reported to build gradient alloy CdxZn1-xSe QDs cores: alternative hot injection and intra particle diffusion. The hot injection of Zn and Se precursors alternatively to CdSe core was difficult to control and reproduce due to ZnSe nuclei formation at high temperature. Annealing CdSe/ZnSe QDs at high temperature to trigger intra particle diffusion to form CdxZn1-xSe alloy cores was much controllable and reproducible. PL intensity time traces of a Cd xZn1-xSe batch at 280 °C diffusion confirmed to have half blinkers and half nonblinkers. XRD results confirmed the alloy composition of CdxZn1-xSe core and EELS indicated the composition structure of CdxZn1-xSe QDs being Cd rich in the inner core and Zn rich on the outer shell.;Another approach to optimize an easily operated synthetic method is to employ more reactive precursors that allow lower reaction temperature and time. Secondary phosphine sulfide (diphenylphosphine sulfide, DPP-S) was investigated in CdS QD synthesis to replace conventional tertiary phosphine based anion precursors (trioctylphosphine, TOP). Successive ionic adsorption and reaction (SILAR) was applied on CdS cores to make controllable size and surface composition of nanocrystals with Cd or S termination. X-ray photoelectron spectroscopy (XPS) confirmed that there were almost half cadmium and half sulfur on CdS core seeds, 87% sulfur for S-terminated CdS QDs and 91% cadmium for Cd-terminated CdS QDs.;The band edge emission of S-terminated CdS QDs was observed to be quenched completely and then recovered after another layer of Cd added onto the surface. Density of electronic states calculation showed that mid-gap states formed in S-terminated QDs can efficiently provide non-radiative recombination pathways while well-defined band gap remained in Cd-terminated QDs. Geometry models revealed that sulfur atoms on the surface tend to form few S-S bonds and create flaws such as dangling bonds on the surface of QDs while Cd atoms are capable of producing continuous structures even in highly nonstoichiometric clusters.;Also, we reported the investigation of secondary phosphine sulfide as an anion source in SILAR shelling process at lower temperature and less reaction time than conventional SILAR reaction. Repeated trials showed the reproducibility of the shelling method including improved PL of QDs (∼20 fold after shelled) and well-maintained FWHM (25-30 nm).
机译:量子点(QD)是一种用途广泛的纳米材料,它利用独特的光学特性和尺寸可调的发射显示其价值,并在许多领域得到了广泛应用。迫切需要可控和可重现的方法以及反应性前体,以使量子点具有更好的可控性,并在潜在应用中具有可设计的性能。;单个QD中的光致发光间歇性(闪烁)是材料的独特性质,已成为主要在生物标记中应用QD时的限制。在单个纳米晶体中出现眨眼现象的可能原因之一是俄歇复合(无辐射衰减并伴有tri核)。合金芯的梯度结构(以及逐渐变化的势垒壁)可能会对电子和空穴提供软约束,从而使俄歇复合效率低下。本文报道了两种合成方法来制备梯度合金CdxZn1-xSe量子点芯:交替热注入和粒子内扩散。由于在高温下会形成ZnSe核,因此难以控制和复制替代CdSe芯的热注入Zn和Se前驱体。在高温下对CdSe / ZnSe QDs进行退火以触发颗粒内部扩散以形成CdxZn1-xSe合金核非常容易控制和重现。 Cd xZn1-xSe批次在280°C扩散下的PL强度时间迹线证实具有一半的闪烁剂和一半的非闪烁剂。 XRD结果证实了CdxZn1-xSe核和EELS的合金组成,表明CdxZn1-xSe量子点的组成结构是内核富含Cd,外壳富含锌。另一种优化易操作合成方法的方法是采用反应性更高的前体,可降低反应温度和时间。在CdS QD合成中研究了仲膦硫化物(二苯基膦硫化物,DPP-S),以取代传统的基于叔膦的阴离子前体(三辛基膦,TOP)。连续离子吸附和反应(SILAR)应用于CdS核,以控制Cd或S端接的纳米晶体的尺寸和表面组成。 X射线光电子能谱(XPS)证实,CdS核心种子上几乎有一半的镉和一半的硫,S端接的CdS QD的硫含量为87%,Cd端接的CdS QD的镉含量为91%。观察到端接的CdS QD被完全淬灭,然后在表面上添加另一层Cd后回收。电子态密度的计算表明,在S端接的QD中形成的中间能隙态可以有效地提供非辐射重组途径,而在Cd端接的QD中仍保留明确的带隙。几何模型表明,表面上的硫原子倾向于形成很少的SS键并在QD表面上形成诸如悬空键之类的缺陷,而Cd原子即使在高度化学计量的簇中也能够产生连续结构。与常规SILAR反应相比,仲膦硫化物作为SILAR脱壳过程中的阴离子源具有更低的温度和更少的反应时间。重复的试验显示了脱壳方法的可重复性,包括改善QD的PL(脱壳后约20倍)和保持良好的FWHM(25-30 nm)。

著录项

  • 作者

    Wei, Helen Hsiu-Ying.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Materials science.;Nanoscience.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号