首页> 外文学位 >Probing Atomic, Electronic, and Optical Structures of Nanoparticle Photocatalysts Using Fast Electrons
【24h】

Probing Atomic, Electronic, and Optical Structures of Nanoparticle Photocatalysts Using Fast Electrons

机译:使用快速电子探测纳米粒子光催化剂的原子,电子和光学结构

获取原文
获取原文并翻译 | 示例

摘要

Photocatalytic water splitting has been proposed as a promising way of generating carbon-neutral fuels from sunlight and water. In one approach, water decomposition is enabled by the use of functionalized nano-particulate photocatalyst composites. The atomic structures of the photocatalysts dictate their electronic and photonic structures, which are controlled by synthesis methods and may alter under reaction conditions. Characterizing these structures, especially the ones associated with photocatalysts' surfaces, is essential because they determine the efficiencies of various reaction steps involved in photocatalytic water splitting. Due to its superior spatial resolution, (scanning) transmission electron microscopy (STEM/TEM), which includes various imaging and spectroscopic techniques, is a suitable tool for probing materials' local atomic, electronic and optical structures. In this work, techniques specific for the study of photocatalysts are developed using model systems.;Nano-level structure-reactivity relationships as well as deactivation mechanisms of Ni core-NiO shell co-catalysts loaded on Ta2O 5 particles are studied using an aberration-corrected TEM. It is revealed that nanometer changes in the shell thickness lead to significant changes in the H2 production. Also, deactivation of this system is found to be related to a photo-driven process resulting in the loss of the Ni core.;In addition, a special form of monochromated electron energy-loss spectroscopy (EELS), the so-called aloof beam EELS, is used to probe surface electronic states as well as light-particle interactions from model oxide nanoparticles. Surface states associated with hydrate species are analyzed using spectral simulations based on a dielectric theory and a density of states model. Geometry-induced optical-frequency resonant modes are excited using fast electrons in catalytically relevant oxides. Combing the spectral features detected in experiments with classical electrodynamics simulations, the underlying physics involved in this excitation process and the various influencing factors of the modes are investigated.;Finally, an in situ light illumination system is developed for an aberration-corrected environmental TEM to enable direct observation of atomic structural transformations of model photocatalysts while they are exposed to near reaction conditions.
机译:已经提出光催化水分解是从阳光和水中产生碳中性燃料的有前途的方法。在一种方法中,通过使用官能化的纳米颗粒光催化剂复合物能够进行水分解。光催化剂的原子结构决定了它们的电子和光子结构,这些结构受合成方法控制,并可能在反应条件下发生变化。表征这些结构,特别是与光催化剂表面相关的结构,是至关重要的,因为它们决定了光催化水分解中涉及的各个反应步骤的效率。由于其出色的空间分辨率,(扫描)透射电子显微镜(STEM / TEM)(包括各种成像和光谱技术)是探测材料局部原子,电子和光学结构的合适工具。在这项工作中,使用模型系统开发了专门用于光催化剂研究的技术。;使用像差-研究了负载在Ta2O 5颗粒上的Ni核-NiO壳助催化剂的纳米级结构-反应性关系以及失活机理。校正后的TEM。揭示了壳厚度的纳米变化导致氢气产生的显着变化。另外,发现该系统的失活与光驱过程有关,导致镍核的损失。;此外,一种特殊形式的单色电子能量损失谱(EELS),即所谓的超微束EELS用于探测表面电子状态以及模型氧化物纳米粒子的光粒子相互作用。使用基于介电理论和状态密度模型的光谱模拟分析与水合物物种相关的表面状态。使用催化相关氧化物中的快速电子激发几何诱导的光频共振模式。结合经典电动力学模拟实验中检测到的光谱特征,研究了激发过程中涉及的基本物理现象以及模式的各种影响因素。最后,开发了一种用于像差校正的环境TEM的原位光照明系统。当模型光催化剂暴露在接近反应条件下时,可以直接观察它们的原子结构转变。

著录项

  • 作者

    Liu, Qianlang.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Nanoscience.;Materials science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号